{"title":"Compact source inversion of self-potential data generated by geomicrobes","authors":"","doi":"10.1016/j.jappgeo.2024.105463","DOIUrl":null,"url":null,"abstract":"<div><p>The self-potential (SP) method is a classical geophysical exploration method which has a wide application prospect in underground pollutant monitoring and other fields. However, due to the complexity of the formation mechanism and the lack of prior information, there are still quite a few difficulties in the precise quantitative inversion of the SP sources, and qualitative interpretation is frequently adopted in practical applications. In this work, we carry out inversion research on the SP data of geomicrobes to accurately invert and locate the spatial distribution of the SP sources which is closely relevant to microbial activities. The resistivity-based depth weighting matrix is added to the inversion algorithm to promote the migration of the SP sources from the earth surface to their original depth. And to conform to the actual distribution of the SP sources, the minimum support stabilizing function is introduced to impose additional compact constraint. Two synthetic models are firstly designed to verify the effectiveness and accuracy of the proposed algorithm. On this basis, the sandbox experiment that continuously observes and records the SP signals generated by the typical organism: Shiwanella Oneida MR-1 breaking down the organic matter is carried out. Then the observed data is inverted to locate the SP sources. The inversion results demonstrate that with the addition of Shiwanella Oneida MR-1 into the humus, the negative SP source immediately appear on the top of the humus, which increase sharply, then remain stable and then slowly decay over time. The negative SP sources are concentrated on the top of the humus, which is consistent with the theoretical analysis of the biogeobattery model.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124001794","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The self-potential (SP) method is a classical geophysical exploration method which has a wide application prospect in underground pollutant monitoring and other fields. However, due to the complexity of the formation mechanism and the lack of prior information, there are still quite a few difficulties in the precise quantitative inversion of the SP sources, and qualitative interpretation is frequently adopted in practical applications. In this work, we carry out inversion research on the SP data of geomicrobes to accurately invert and locate the spatial distribution of the SP sources which is closely relevant to microbial activities. The resistivity-based depth weighting matrix is added to the inversion algorithm to promote the migration of the SP sources from the earth surface to their original depth. And to conform to the actual distribution of the SP sources, the minimum support stabilizing function is introduced to impose additional compact constraint. Two synthetic models are firstly designed to verify the effectiveness and accuracy of the proposed algorithm. On this basis, the sandbox experiment that continuously observes and records the SP signals generated by the typical organism: Shiwanella Oneida MR-1 breaking down the organic matter is carried out. Then the observed data is inverted to locate the SP sources. The inversion results demonstrate that with the addition of Shiwanella Oneida MR-1 into the humus, the negative SP source immediately appear on the top of the humus, which increase sharply, then remain stable and then slowly decay over time. The negative SP sources are concentrated on the top of the humus, which is consistent with the theoretical analysis of the biogeobattery model.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.