Enhancement of the gelling properties of Aristichthys nobilis: Insights into intermolecular interactions between okra polysaccharide and myofibrillar protein

IF 6.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
{"title":"Enhancement of the gelling properties of Aristichthys nobilis: Insights into intermolecular interactions between okra polysaccharide and myofibrillar protein","authors":"","doi":"10.1016/j.crfs.2024.100814","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of various contents of okra polysaccharide (OP) (0%–1%) on myofibrillar protein (MP) gelation and the interaction mechanism between OP and MP were investigated. OP improved the gelling properties of MP with an additive limitation of 0.75%. Rheological analysis demonstrated that the addition of OP enhanced the interactions between MPs, resulting in a denser intermolecular gel network structure. The addition of OP shifted the I<sub>850</sub>/I<sub>830</sub> of Fourier transform infrared spectroscopy, indicating that hydrogen bonds were formed between OP and MP. Adding OP promoted the transition from α-helix to β-sheet in the MP. OP exposed the hydrophobic groups of MPs and increased the number of hydrophobic interactions between them, favoring the formation of a dense gel network. Molecular docking predicted that hydrogen bonds were the main force involved in the binding of OP and MP. Moderate OP promoted the aggregation of MPs and improved their functional properties, facilitating heat-induced gelation.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665927124001400/pdfft?md5=f2c613e2643eb552f3be41ce442f0670&pid=1-s2.0-S2665927124001400-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927124001400","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of various contents of okra polysaccharide (OP) (0%–1%) on myofibrillar protein (MP) gelation and the interaction mechanism between OP and MP were investigated. OP improved the gelling properties of MP with an additive limitation of 0.75%. Rheological analysis demonstrated that the addition of OP enhanced the interactions between MPs, resulting in a denser intermolecular gel network structure. The addition of OP shifted the I850/I830 of Fourier transform infrared spectroscopy, indicating that hydrogen bonds were formed between OP and MP. Adding OP promoted the transition from α-helix to β-sheet in the MP. OP exposed the hydrophobic groups of MPs and increased the number of hydrophobic interactions between them, favoring the formation of a dense gel network. Molecular docking predicted that hydrogen bonds were the main force involved in the binding of OP and MP. Moderate OP promoted the aggregation of MPs and improved their functional properties, facilitating heat-induced gelation.

Abstract Image

增强黄秋葵的胶凝特性:黄秋葵多糖与肌纤蛋白分子间相互作用的启示
研究了不同含量的秋葵多糖(OP)(0%-1%)对肌纤维蛋白(MP)凝胶化的影响以及OP与MP之间的相互作用机制。在添加量为 0.75% 时,OP 可改善 MP 的胶凝特性。流变学分析表明,OP 的添加增强了 MP 之间的相互作用,使分子间凝胶网络结构更加致密。OP 的加入使傅里叶变换红外光谱的 I850/I830 发生移动,表明 OP 与 MP 之间形成了氢键。OP 的加入促进了 MP 从 α-螺旋向 β-片状的转变。OP 暴露了 MP 的疏水基团,增加了它们之间的疏水相互作用,有利于形成致密的凝胶网络。分子对接预测氢键是 OP 与 MP 结合的主要作用力。适度的 OP 可促进 MP 的聚集并改善其功能特性,从而促进热诱导凝胶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Food Science
Current Research in Food Science Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
3.20%
发文量
232
审稿时长
84 days
期刊介绍: Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信