Predicting sunspot number from topological features in spectral images I: Machine learning approach

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
D. Sierra-Porta , M. Tarazona-Alvarado , D.D. Herrera Acevedo
{"title":"Predicting sunspot number from topological features in spectral images I: Machine learning approach","authors":"D. Sierra-Porta ,&nbsp;M. Tarazona-Alvarado ,&nbsp;D.D. Herrera Acevedo","doi":"10.1016/j.ascom.2024.100857","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an advanced machine learning approach to predict the number of sunspots using a comprehensive dataset derived from solar images provided by the Solar and Heliospheric Observatory (SOHO). The dataset encompasses various spectral bands, capturing the complex dynamics of solar activity and facilitating interdisciplinary analyses with other solar phenomena. We employed five machine learning models: Random Forest Regressor, Gradient Boosting Regressor, Extra Trees Regressor, Ada Boost Regressor, and Hist Gradient Boosting Regressor, to predict sunspot numbers. These models utilized four key heliospheric variables — Proton Density, Temperature, Bulk Flow Speed and Interplanetary Magnetic Field (IMF) — alongside 14 newly introduced topological variables. These topological features were extracted from solar images using different filters, including HMIIGR, HMIMAG, EIT171, EIT195, EIT284, and EIT304. In total, 60 models were constructed, both incorporating and excluding the topological variables. Our analysis reveals that models incorporating the topological variables achieved significantly higher accuracy, with the r2-score improving from approximately 0.30 to 0.93 on average. The Extra Trees Regressor (ET) emerged as the best-performing model, demonstrating superior predictive capabilities across all datasets. These results underscore the potential of combining machine learning models with additional topological features from spectral analysis, offering deeper insights into the complex dynamics of solar activity and enhancing the precision of sunspot number predictions. This approach provides a novel methodology for improving space weather forecasting and contributes to a more comprehensive understanding of solar-terrestrial interactions.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100857"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213133724000726/pdfft?md5=263e96a037564f7a5811a7559eb104fa&pid=1-s2.0-S2213133724000726-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000726","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an advanced machine learning approach to predict the number of sunspots using a comprehensive dataset derived from solar images provided by the Solar and Heliospheric Observatory (SOHO). The dataset encompasses various spectral bands, capturing the complex dynamics of solar activity and facilitating interdisciplinary analyses with other solar phenomena. We employed five machine learning models: Random Forest Regressor, Gradient Boosting Regressor, Extra Trees Regressor, Ada Boost Regressor, and Hist Gradient Boosting Regressor, to predict sunspot numbers. These models utilized four key heliospheric variables — Proton Density, Temperature, Bulk Flow Speed and Interplanetary Magnetic Field (IMF) — alongside 14 newly introduced topological variables. These topological features were extracted from solar images using different filters, including HMIIGR, HMIMAG, EIT171, EIT195, EIT284, and EIT304. In total, 60 models were constructed, both incorporating and excluding the topological variables. Our analysis reveals that models incorporating the topological variables achieved significantly higher accuracy, with the r2-score improving from approximately 0.30 to 0.93 on average. The Extra Trees Regressor (ET) emerged as the best-performing model, demonstrating superior predictive capabilities across all datasets. These results underscore the potential of combining machine learning models with additional topological features from spectral analysis, offering deeper insights into the complex dynamics of solar activity and enhancing the precision of sunspot number predictions. This approach provides a novel methodology for improving space weather forecasting and contributes to a more comprehensive understanding of solar-terrestrial interactions.

从光谱图像的拓扑特征预测太阳黑子数量 I:机器学习方法
本研究提出了一种先进的机器学习方法,利用太阳和日光层天文台(SOHO)提供的太阳图像生成的综合数据集预测太阳黑子的数量。该数据集包含各种光谱波段,捕捉了太阳活动的复杂动态,便于与其他太阳现象进行跨学科分析。我们采用了五种机器学习模型:随机森林回归模型、梯度提升回归模型、额外树回归模型、Ada 提升回归模型和 Hist 梯度提升回归模型来预测太阳黑子数量。这些模型利用了四个关键的日光层变量--质子密度、温度、大量流动速度和行星际磁场(IMF)--以及 14 个新引入的拓扑变量。这些拓扑特征是利用不同的滤光片从太阳图像中提取的,包括 HMIIGR、HMIMAG、EIT171、EIT195、EIT284 和 EIT304。总共构建了 60 个模型,其中既有包含拓扑变量的模型,也有不包含拓扑变量的模型。我们的分析表明,包含拓扑变量的模型准确率明显更高,平均 r2 分数从约 0.30 提高到 0.93。Extra Trees Regressor (ET) 是表现最好的模型,在所有数据集上都表现出了卓越的预测能力。这些结果凸显了将机器学习模型与光谱分析的额外拓扑特征相结合的潜力,从而更深入地了解太阳活动的复杂动态,并提高太阳黑子数量预测的精度。这种方法为改进空间天气预报提供了一种新方法,有助于更全面地了解日地相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信