Enhancing electrochemical properties of bacterial cellulose-derived carbon nanofibers through physical CO2 activation

Q1 Materials Science
Likkhasit Wannasen , Narong Chanlek , Wiyada Mongkolthanaruk , Sujittra Daengsakul , Supree Pinitsoontorn
{"title":"Enhancing electrochemical properties of bacterial cellulose-derived carbon nanofibers through physical CO2 activation","authors":"Likkhasit Wannasen ,&nbsp;Narong Chanlek ,&nbsp;Wiyada Mongkolthanaruk ,&nbsp;Sujittra Daengsakul ,&nbsp;Supree Pinitsoontorn","doi":"10.1016/j.mset.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon nanofiber (CNF) derived from carbonization of bacterial cellulose (BC), with a unique three-dimensional porous nanostructure, has received significant interest in electrochemical applications. In this study, CNF samples were physically activated in CO<sub>2</sub> at different temperatures and durations. Raman spectroscopy and FTIR analysis showed that CO<sub>2</sub> activation caused hexagonal lattice defects, disorder, and oxygen-related functional groups in an amorphous carbon structure. CNF surface morphology changed after physical activation, reducing fiber diameter to 55 nm and introducing mesopores. Through activation temperature and time adjustments, surface area (870.1 m<sup>2</sup>/g) and micropore surface area (535.6 m<sup>2</sup>/g) and pore volume (0.2148 cm<sup>3</sup>/g) increased. EDX elemental analysis showed that activated CNF had a carbon concentration of &gt; 90 %, while XPS analysis showed surface functional groups like C-C (sp<sup>2</sup>) and C-C (sp<sup>3</sup>) hybridization, which could improve electrolyte ion adsorption and accessibility. Electrochemical properties improved owing to CO<sub>2</sub> activation. The optimal activation condition of 800 ℃ for 60 min resulted in the highest specific area capacitance of 552 mF cm<sup>−2</sup> at 1 mA cm<sup>−2</sup>. This activated CNF electrode retained capacitance nearly unchanged up to 3,000 cycles. It also achieved the highest energy density of 76.7 mWh cm<sup>−2</sup> at 500 mW cm<sup>−2</sup>. This study demonstrates the efficacy of CO<sub>2</sub> physical activation for enhancing the electrochemical properties of CNF electrodes. The findings also highlight the importance of tailoring activation conditions, providing valuable insights for the design of advanced energy storage materials.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 13-23"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000156/pdfft?md5=1d1d74f6205ed5e1410201dcc372bd19&pid=1-s2.0-S2589299124000156-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299124000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanofiber (CNF) derived from carbonization of bacterial cellulose (BC), with a unique three-dimensional porous nanostructure, has received significant interest in electrochemical applications. In this study, CNF samples were physically activated in CO2 at different temperatures and durations. Raman spectroscopy and FTIR analysis showed that CO2 activation caused hexagonal lattice defects, disorder, and oxygen-related functional groups in an amorphous carbon structure. CNF surface morphology changed after physical activation, reducing fiber diameter to 55 nm and introducing mesopores. Through activation temperature and time adjustments, surface area (870.1 m2/g) and micropore surface area (535.6 m2/g) and pore volume (0.2148 cm3/g) increased. EDX elemental analysis showed that activated CNF had a carbon concentration of > 90 %, while XPS analysis showed surface functional groups like C-C (sp2) and C-C (sp3) hybridization, which could improve electrolyte ion adsorption and accessibility. Electrochemical properties improved owing to CO2 activation. The optimal activation condition of 800 ℃ for 60 min resulted in the highest specific area capacitance of 552 mF cm−2 at 1 mA cm−2. This activated CNF electrode retained capacitance nearly unchanged up to 3,000 cycles. It also achieved the highest energy density of 76.7 mWh cm−2 at 500 mW cm−2. This study demonstrates the efficacy of CO2 physical activation for enhancing the electrochemical properties of CNF electrodes. The findings also highlight the importance of tailoring activation conditions, providing valuable insights for the design of advanced energy storage materials.

Abstract Image

通过二氧化碳物理活化增强细菌纤维素衍生碳纳米纤维的电化学特性
由细菌纤维素(BC)碳化产生的纳米碳纤维(CNF)具有独特的三维多孔纳米结构,在电化学应用中备受关注。在本研究中,CNF 样品在不同温度和持续时间的二氧化碳中进行了物理活化。拉曼光谱和傅立叶变换红外分析表明,二氧化碳活化导致无定形碳结构中出现六方晶格缺陷、无序和与氧相关的官能团。物理活化后,CNF 表面形态发生了变化,纤维直径减小到 55 nm,并引入了中孔。通过调整活化温度和时间,表面积(870.1 m2/g)和微孔表面积(535.6 m2/g)以及孔体积(0.2148 cm3/g)均有所增加。EDX 元素分析表明,活性 CNF 的碳浓度为 90%,而 XPS 分析表明,表面官能团如 C-C(sp2)和 C-C(sp3)杂化,可提高电解质离子的吸附性和可及性。二氧化碳活化改善了电化学特性。在 800 ℃、60 分钟的最佳活化条件下,1 mA cm-2 的比面积电容为 552 mF cm-2。这种活化的 CNF 电极在 3,000 次循环中电容几乎保持不变。在 500 mW cm-2 的条件下,它还获得了 76.7 mWh cm-2 的最高能量密度。这项研究证明了二氧化碳物理活化在增强 CNF 电极电化学特性方面的功效。研究结果还强调了定制活化条件的重要性,为设计先进的储能材料提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信