L.I. Granone , F.A. Sánchez , P. Hegel , S. Pereda
{"title":"Decaffeination of yerba mate (Ilex paraguariensis) by pressurized liquid CO2 extraction: A feasible process?","authors":"L.I. Granone , F.A. Sánchez , P. Hegel , S. Pereda","doi":"10.1016/j.supflu.2024.106368","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces a pumpless high-pressure Soxhlet cross-current solid-liquid extraction method using liquid CO<sub>2</sub> and hydrated ethanol for studying the decaffeination of yerba mate. By combining experimental results with thermodynamic modelling, a comprehensive evaluation of the impact of the co-solvent composition is achieved. It is observed that an ethanol/water mixture with a specific composition of 85 wt% is optimal under mild operating conditions (283 K and 4.5 MPa) for extracting caffeine from chopped yerba mate leaves with a negligible co-extraction of caffeoyl derivative antioxidants. The obtained selectivity, together with the phase equilibrium simulation, provide evidence of the significant potential of liquid CO<sub>2</sub> extraction as a decaffeination alternative for yerba mate. Thus, high-pressure Soxhlet extraction serves as simple technique to access valuable experimental information with potential for the conceptual design of further scalable semi-continuous processes.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106368"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a pumpless high-pressure Soxhlet cross-current solid-liquid extraction method using liquid CO2 and hydrated ethanol for studying the decaffeination of yerba mate. By combining experimental results with thermodynamic modelling, a comprehensive evaluation of the impact of the co-solvent composition is achieved. It is observed that an ethanol/water mixture with a specific composition of 85 wt% is optimal under mild operating conditions (283 K and 4.5 MPa) for extracting caffeine from chopped yerba mate leaves with a negligible co-extraction of caffeoyl derivative antioxidants. The obtained selectivity, together with the phase equilibrium simulation, provide evidence of the significant potential of liquid CO2 extraction as a decaffeination alternative for yerba mate. Thus, high-pressure Soxhlet extraction serves as simple technique to access valuable experimental information with potential for the conceptual design of further scalable semi-continuous processes.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.