Ni Wang, Yu Liang, Wei Zhang, Tingting Wu, Dongning Hao
{"title":"A foreground calibration technique with multi-level dither for a 14-bit 1-MS/s SAR ADC","authors":"Ni Wang, Yu Liang, Wei Zhang, Tingting Wu, Dongning Hao","doi":"10.1016/j.mejo.2024.106351","DOIUrl":null,"url":null,"abstract":"<div><p>A foreground calibration is proposed to obtain the real weights in the split capacitor digital-to-analog- converter (CDAC) of a 14-bit 1-MS/s successive-approximation-register (SAR) ADC. Since the non-linearity of high-resolution SAR ADC is mainly caused by the mismatch of capacitors, calibration of weights of more significant bits is necessary when the resolution of SAR ADC comes to more than 12 bits. By injecting a multi-level dither signal in both the calibration and conversion phases of the calibration scheme, the precision and non-linearity of SAR ADC can be significantly improved. Simulation results indicate that the peak signal-to-noise-and-distortion ratio (SNDR) and the spurious-free dynamic range (SFDR) achieve 79.93 dB and 91.21 dB by employing the proposed calibration technique in a 14-bit split-CDAC SAR ADC. Besides, integral non-linearity (INL) achieves 0.22 least-significant bit (LSB).</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124000559","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A foreground calibration is proposed to obtain the real weights in the split capacitor digital-to-analog- converter (CDAC) of a 14-bit 1-MS/s successive-approximation-register (SAR) ADC. Since the non-linearity of high-resolution SAR ADC is mainly caused by the mismatch of capacitors, calibration of weights of more significant bits is necessary when the resolution of SAR ADC comes to more than 12 bits. By injecting a multi-level dither signal in both the calibration and conversion phases of the calibration scheme, the precision and non-linearity of SAR ADC can be significantly improved. Simulation results indicate that the peak signal-to-noise-and-distortion ratio (SNDR) and the spurious-free dynamic range (SFDR) achieve 79.93 dB and 91.21 dB by employing the proposed calibration technique in a 14-bit split-CDAC SAR ADC. Besides, integral non-linearity (INL) achieves 0.22 least-significant bit (LSB).
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.