Innovative Inverse-Design Approach for On-Chip Computational Spectrometers: Enhanced Performance and Reliability

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ang Li , Yifan Wu , Gongyuan Zhang , Chang Wang , Jijun He , Yaqi Shi , Zongyin Yang , Shilong Pan
{"title":"Innovative Inverse-Design Approach for On-Chip Computational Spectrometers: Enhanced Performance and Reliability","authors":"Ang Li ,&nbsp;Yifan Wu ,&nbsp;Gongyuan Zhang ,&nbsp;Chang Wang ,&nbsp;Jijun He ,&nbsp;Yaqi Shi ,&nbsp;Zongyin Yang ,&nbsp;Shilong Pan","doi":"10.1016/j.eng.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><div>Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers, offering high performance and improved resilience to fabrication variations and temperature fluctuations. However, the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures. This leads to an uncontrollable, non-reproducible, and suboptimal spectrometer performance. In this study, we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers. By harnessing the power of inverse design, which has traditionally been applied to optimize single devices with simple performance, we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses. This approach can be applied to a wide range of structures. We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity. For a given structure, our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters. The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"43 ","pages":"Pages 81-88"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924004247","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers, offering high performance and improved resilience to fabrication variations and temperature fluctuations. However, the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures. This leads to an uncontrollable, non-reproducible, and suboptimal spectrometer performance. In this study, we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers. By harnessing the power of inverse design, which has traditionally been applied to optimize single devices with simple performance, we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses. This approach can be applied to a wide range of structures. We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity. For a given structure, our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters. The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters.
片上计算光谱仪的创新反设计方法:提高性能和可靠性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信