{"title":"Spectral approximation and error analysis for the transmission eigenvalue problem with an isotropic inhomogeneous medium","authors":"Ting Tan , Waixiang Cao","doi":"10.1016/j.cam.2024.116163","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose an effective Legendre-Fourier spectral method for the transmission eigenvalue problem in polar geometry with an isotropic inhomogeneous medium. The basic idea of this methodology is to rewrite the initial problem into its equivalent form by using polar coordinates and some specially designed polar conditions. A variational method and its discrete version (i.e., Legendre-Fourier spectral method) are then presented within a class of weighted Sobolev spaces. With the help of the spectral theory of compact operators and the approximation properties of some specially designed projections in non-uniformly weighted Sobolev spaces, error estimates with spectral accuracy of the Legendre-Fourier spectral method for both the eigenvalue and eigenfunction approximations are established. Numerical experiments are presented to confirm the theoretical findings and the efficiency of our algorithm.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an effective Legendre-Fourier spectral method for the transmission eigenvalue problem in polar geometry with an isotropic inhomogeneous medium. The basic idea of this methodology is to rewrite the initial problem into its equivalent form by using polar coordinates and some specially designed polar conditions. A variational method and its discrete version (i.e., Legendre-Fourier spectral method) are then presented within a class of weighted Sobolev spaces. With the help of the spectral theory of compact operators and the approximation properties of some specially designed projections in non-uniformly weighted Sobolev spaces, error estimates with spectral accuracy of the Legendre-Fourier spectral method for both the eigenvalue and eigenfunction approximations are established. Numerical experiments are presented to confirm the theoretical findings and the efficiency of our algorithm.