Spectral approximation and error analysis for the transmission eigenvalue problem with an isotropic inhomogeneous medium

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ting Tan , Waixiang Cao
{"title":"Spectral approximation and error analysis for the transmission eigenvalue problem with an isotropic inhomogeneous medium","authors":"Ting Tan ,&nbsp;Waixiang Cao","doi":"10.1016/j.cam.2024.116163","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose an effective Legendre-Fourier spectral method for the transmission eigenvalue problem in polar geometry with an isotropic inhomogeneous medium. The basic idea of this methodology is to rewrite the initial problem into its equivalent form by using polar coordinates and some specially designed polar conditions. A variational method and its discrete version (i.e., Legendre-Fourier spectral method) are then presented within a class of weighted Sobolev spaces. With the help of the spectral theory of compact operators and the approximation properties of some specially designed projections in non-uniformly weighted Sobolev spaces, error estimates with spectral accuracy of the Legendre-Fourier spectral method for both the eigenvalue and eigenfunction approximations are established. Numerical experiments are presented to confirm the theoretical findings and the efficiency of our algorithm.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an effective Legendre-Fourier spectral method for the transmission eigenvalue problem in polar geometry with an isotropic inhomogeneous medium. The basic idea of this methodology is to rewrite the initial problem into its equivalent form by using polar coordinates and some specially designed polar conditions. A variational method and its discrete version (i.e., Legendre-Fourier spectral method) are then presented within a class of weighted Sobolev spaces. With the help of the spectral theory of compact operators and the approximation properties of some specially designed projections in non-uniformly weighted Sobolev spaces, error estimates with spectral accuracy of the Legendre-Fourier spectral method for both the eigenvalue and eigenfunction approximations are established. Numerical experiments are presented to confirm the theoretical findings and the efficiency of our algorithm.

各向同性非均质介质传输特征值问题的频谱近似和误差分析
在本文中,我们提出了一种有效的 Legendre-Fourier 光谱法,用于解决各向同性非均质介质极坐标中的透射特征值问题。该方法的基本思想是利用极坐标和一些专门设计的极坐标条件将初始问题重写为等效形式。然后在一类加权 Sobolev 空间中提出了一种变分法及其离散版本(即 Legendre-Fourier 光谱法)。借助紧凑算子的谱理论和非均匀加权索博廖夫空间中一些特别设计的投影的近似特性,建立了 Legendre-Fourier 谱方法对特征值和特征函数近似的具有谱精度的误差估计。通过数值实验证实了我们算法的理论发现和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信