Changes of mRNA, miRNA and lncRNA expression contributing to skeletal muscle differences between fetus and adult Mongolian horses

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"Changes of mRNA, miRNA and lncRNA expression contributing to skeletal muscle differences between fetus and adult Mongolian horses","authors":"","doi":"10.1016/j.cbd.2024.101294","DOIUrl":null,"url":null,"abstract":"<div><p>The growth and development of myofibers, as the fundamental units comprising muscle tissue, and their composition type are indeed among the most crucial factors influencing skeletal muscle types. Muscle fiber adaptation is closely associated with alterations in physiological conditions. Muscle fiber types undergo dynamic changes in fetus and adult horses. Our aim is to investigate the mechanisms influencing the differences in muscle fiber types between fetal and adult stages of Mongolian horses. The study investigated the distribution of muscle fiber types within <em>longissimus dorsi</em> muscle of fetus and adult Mongolian horses. A total of 652 differentially expressed genes (DEGs), 476 Differentially expressed lncRNAs (DELs), and 174 Differentially expressed miRNAs (DEMIRs) were identified using deep RNA-seq analysis. The results of functional analysis reveal the transformations in muscle fiber type from the fetal to adult stage in Mongolian horses. The up-regulated DEGs were implicated in the development and differentiation of muscle fibers, while down-regulated DEGs were associated with muscle fiber contraction, transformation, and metabolism. Additionally, connections between non-coding RNA and mRNA landscapes were identified based on their functional alterations, some non-coding RNA target genes may be associated with immunity. These data have broadened our understanding of the specific roles and interrelationships among regulatory molecules involved in Mongolian horse development, this provides new perspectives for selecting and breeding superior individuals and for disease prevention.</p></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001072","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The growth and development of myofibers, as the fundamental units comprising muscle tissue, and their composition type are indeed among the most crucial factors influencing skeletal muscle types. Muscle fiber adaptation is closely associated with alterations in physiological conditions. Muscle fiber types undergo dynamic changes in fetus and adult horses. Our aim is to investigate the mechanisms influencing the differences in muscle fiber types between fetal and adult stages of Mongolian horses. The study investigated the distribution of muscle fiber types within longissimus dorsi muscle of fetus and adult Mongolian horses. A total of 652 differentially expressed genes (DEGs), 476 Differentially expressed lncRNAs (DELs), and 174 Differentially expressed miRNAs (DEMIRs) were identified using deep RNA-seq analysis. The results of functional analysis reveal the transformations in muscle fiber type from the fetal to adult stage in Mongolian horses. The up-regulated DEGs were implicated in the development and differentiation of muscle fibers, while down-regulated DEGs were associated with muscle fiber contraction, transformation, and metabolism. Additionally, connections between non-coding RNA and mRNA landscapes were identified based on their functional alterations, some non-coding RNA target genes may be associated with immunity. These data have broadened our understanding of the specific roles and interrelationships among regulatory molecules involved in Mongolian horse development, this provides new perspectives for selecting and breeding superior individuals and for disease prevention.

Abstract Image

胎儿和成年蒙古马骨骼肌差异的 mRNA、miRNA 和 lncRNA 表达变化
肌纤维作为构成肌肉组织的基本单位,其生长发育及其组成类型确实是影响骨骼肌类型的最关键因素之一。肌纤维的适应性与生理条件的改变密切相关。胎儿和成年马的肌肉纤维类型会发生动态变化。我们的目的是研究影响蒙古马胎儿期和成年期肌肉纤维类型差异的机制。本研究调查了蒙古马胎儿期和成年期背长肌内肌纤维类型的分布。通过深度RNA-seq分析,共鉴定出652个差异表达基因(DEGs)、476个差异表达lncRNAs(DELs)和174个差异表达miRNAs(DEMIRs)。功能分析结果揭示了蒙古马从胎儿期到成年期肌肉纤维类型的转变。上调的 DEGs 与肌纤维的发育和分化有关,而下调的 DEGs 则与肌纤维的收缩、转化和代谢有关。此外,根据非编码 RNA 和 mRNA 的功能变化,我们还发现了它们之间的联系,一些非编码 RNA 靶基因可能与免疫有关。这些数据拓宽了我们对蒙古马发育过程中调控分子的特定作用和相互关系的认识,为选育优良个体和预防疾病提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信