Periphery Pre-S1 and S1 helix nexus for PIP2 at TRPC3 channel

IF 4.3 2区 生物学 Q2 CELL BIOLOGY
Jinhyeong Kim , Kyu Pil Lee , Insuk So
{"title":"Periphery Pre-S1 and S1 helix nexus for PIP2 at TRPC3 channel","authors":"Jinhyeong Kim ,&nbsp;Kyu Pil Lee ,&nbsp;Insuk So","doi":"10.1016/j.ceca.2024.102932","DOIUrl":null,"url":null,"abstract":"<div><p>Transient receptor potential canonical 3 (TRPC3) is a calcium-permeable, non-selective cation channel known to be regulated by components of the phospholipase C (PLC)-mediated signaling pathway, such as Ca<sup>2+</sup>, diacylglycerol (DAG) and phosphatidylinositol 4,5-biphosphate (PI(4,5)P<sub>2</sub>). However, the molecular gating mechanism by these regulators is not yet fully understood, especially its regulation by PI(4,5)P<sub>2</sub>, despite the importance of this channel in cardiovascular pathophysiology. Recently, Clarke et al. (2024) have reported that PI(4,5)P<sub>2</sub> is a positive modulator for TRPC3 using molecular dynamics simulations and patch-clamp techniques. They have demonstrated a multistep gating mechanism of TRPC3 with the binding of PI(4,5)P<sub>2</sub> to the lipid binding site located at the pre-S1/S1 nexus, and the propagation of PI(4,5)P<sub>2</sub> sensing to the pore domain via a salt bridge between the TRP helix and the S4–S5 linker.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"123 ","pages":"Article 102932"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000903","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transient receptor potential canonical 3 (TRPC3) is a calcium-permeable, non-selective cation channel known to be regulated by components of the phospholipase C (PLC)-mediated signaling pathway, such as Ca2+, diacylglycerol (DAG) and phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). However, the molecular gating mechanism by these regulators is not yet fully understood, especially its regulation by PI(4,5)P2, despite the importance of this channel in cardiovascular pathophysiology. Recently, Clarke et al. (2024) have reported that PI(4,5)P2 is a positive modulator for TRPC3 using molecular dynamics simulations and patch-clamp techniques. They have demonstrated a multistep gating mechanism of TRPC3 with the binding of PI(4,5)P2 to the lipid binding site located at the pre-S1/S1 nexus, and the propagation of PI(4,5)P2 sensing to the pore domain via a salt bridge between the TRP helix and the S4–S5 linker.

Abstract Image

TRPC3 通道上 PIP2 的外围 Pre-S1 和 S1 螺旋节点
瞬时受体电位典型 3(TRPC3)是一种钙离子渗透性非选择性阳离子通道,已知它受磷脂酶 C(PLC)介导的信号通路成分(如 Ca2+、二酰甘油(DAG)和磷脂酰肌醇 4,5-二磷酸(PI(4,5)P2))的调控。然而,尽管 PI(4,5)P2 通道在心血管病理生理学中具有重要作用,但这些调节因子的分子门控机制,尤其是 PI(4,5)P2 的调节机制尚未完全明了。最近,Clarke 等人(2024 年)利用分子动力学模拟和膜片钳技术报道了 PI(4,5)P2 是 TRPC3 的正向调节剂。他们证明了 TRPC3 的多步门控机制:PI(4,5)P2 与位于前 S1/S1 连接点的脂质结合位点结合,PI(4,5)P2 的感应通过 TRP 螺旋与 S4-S5 连接器之间的盐桥传播到孔域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell calcium
Cell calcium 生物-细胞生物学
CiteScore
8.70
自引率
5.00%
发文量
115
审稿时长
35 days
期刊介绍: Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include: Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling Influence of calcium regulation in affecting health and disease outcomes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信