A QSAR-based application for the prediction of lethal blood concentration of new psychoactive substances

Tarcisio Correa , Jéssica Sales Barbosa , Thiara Vanessa Barbosa da Silva , Thiala Soares Josino da Silva Parente , Danielle de Paula Magalhães , Wanderley Pinheiro Holanda Júnior
{"title":"A QSAR-based application for the prediction of lethal blood concentration of new psychoactive substances","authors":"Tarcisio Correa ,&nbsp;Jéssica Sales Barbosa ,&nbsp;Thiara Vanessa Barbosa da Silva ,&nbsp;Thiala Soares Josino da Silva Parente ,&nbsp;Danielle de Paula Magalhães ,&nbsp;Wanderley Pinheiro Holanda Júnior","doi":"10.1016/j.etdah.2024.100156","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development and introduction of new psychoactive substances (NPS) into illegal markets present an enormous challenge for forensic toxicologists, as there is limited knowledge about their toxicity in humans. To strengthen forensic interpretation of NPS intoxication cases, we have developed a predictive model for estimating human lethal blood concentrations (LBC) of various NPS. This quantitative structure-activity relationship (QSAR) model focuses on opioids, designer benzodiazepines, synthetic cathinones, synthetic cannabinoids, and phenethylamines. Utilising linear regression and multilayer perceptron algorithms, the models was trained using data from the existing literature. A toxicological significance-based approach have been applied to refine the selection of training data. The model demonstrated satisfactory performance metrics through cross-validation (<em>R</em> ≈ 0.8, MAE ≈ 0.6) and comparison with experimental data (<em>R</em> ≈ 0.9). A Python-based web application have been developed to facilite the use of the created model in predicting LBC of NPS. Despite the model's reliability, limitations due to data availability, quality and the complexities of <em>post-mortem</em> toxicology mean that its predictions should be interpreted with caution.</p></div>","PeriodicalId":72899,"journal":{"name":"Emerging trends in drugs, addictions, and health","volume":"4 ","pages":"Article 100156"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667118224000151/pdfft?md5=2719b77e6514717fbfe2a068903f6205&pid=1-s2.0-S2667118224000151-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging trends in drugs, addictions, and health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667118224000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development and introduction of new psychoactive substances (NPS) into illegal markets present an enormous challenge for forensic toxicologists, as there is limited knowledge about their toxicity in humans. To strengthen forensic interpretation of NPS intoxication cases, we have developed a predictive model for estimating human lethal blood concentrations (LBC) of various NPS. This quantitative structure-activity relationship (QSAR) model focuses on opioids, designer benzodiazepines, synthetic cathinones, synthetic cannabinoids, and phenethylamines. Utilising linear regression and multilayer perceptron algorithms, the models was trained using data from the existing literature. A toxicological significance-based approach have been applied to refine the selection of training data. The model demonstrated satisfactory performance metrics through cross-validation (R ≈ 0.8, MAE ≈ 0.6) and comparison with experimental data (R ≈ 0.9). A Python-based web application have been developed to facilite the use of the created model in predicting LBC of NPS. Despite the model's reliability, limitations due to data availability, quality and the complexities of post-mortem toxicology mean that its predictions should be interpreted with caution.

基于 QSAR 的新型精神活性物质致死血药浓度预测应用程序
新精神活性物质(NPS)的快速发展和进入非法市场给法医毒理学家带来了巨大的挑战,因为人们对这些物质在人体中的毒性了解有限。为了加强对 NPS 中毒案例的法医解释,我们开发了一个预测模型,用于估算各种 NPS 的人体致死血液浓度(LBC)。该定量结构-活性关系(QSAR)模型主要针对阿片类、特制苯并二氮杂卓、合成卡西酮、合成大麻素和酚乙胺。模型采用线性回归和多层感知器算法,利用现有文献中的数据进行训练。采用基于毒理学意义的方法来完善训练数据的选择。通过交叉验证(R ≈ 0.8,MAE ≈ 0.6)以及与实验数据的比较(R ≈ 0.9),该模型的性能指标令人满意。为了便于使用所创建的模型预测核动力源的 LBC,开发了一个基于 Python 的网络应用程序。尽管该模型非常可靠,但由于数据的可用性、质量和死后毒理学的复杂性,其预测结果仍需谨慎解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Emerging trends in drugs, addictions, and health
Emerging trends in drugs, addictions, and health Pharmacology, Psychiatry and Mental Health, Forensic Medicine, Drug Discovery, Pharmacology, Toxicology and Pharmaceutics (General)
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信