Connor K. Holiski , Rachel Payne , Meng-Jen (Vince) Wang , Glenn E. Sjoden , Tara Mastren
{"title":"Adsorption of terbium (III) on DGA and LN resins: Thermodynamics, isotherms, and kinetics","authors":"Connor K. Holiski , Rachel Payne , Meng-Jen (Vince) Wang , Glenn E. Sjoden , Tara Mastren","doi":"10.1016/j.chroma.2024.465211","DOIUrl":null,"url":null,"abstract":"<div><p>Two commercially available extraction chromatography (EXC) resins containing N,N,N’,N’-tetra-n-octyldiglycolamide (DGA Resin, Normal, 50 – 100 μm) and Bis(2-ethylhexyl) phosphate (LN Resin, 100 – 150 μm) were used as adsorbents to study fundamental adsorption properties such as thermodynamic values, equilibrium isotherms, and kinetic uptake models for terbium(III) adsorption. Weight distribution ratios (D<sub>w</sub>) for terbium on DGA and LN resins were measured using a [<sup>160</sup>Tb]Tb<sup>3+</sup>radiometric tracer in nitric acid as a function of acidity, temperature, initial analyte concentration, and equilibrium time. The D<sub>w</sub> values showed increasing binding affinity for DGA resin at high nitric acid concentrations and decreasing binding affinity for LN resins. Thermodynamic studies for DGA and LN resins revealed that the Gibbs free energy (ΔG) increased consistently with temperature. To model equilibrium data, increasingly higher parameter equilibrium isotherm models (Henry (1) < Langmuir, Freundlich (2) < Redlich-Peterson (3) < Fritz-Schluender (4)) were compared on their root mean squared errors (RMSE) and adjusted determination coefficients to determine the most applicable model. In all cases, the empirical four-parameter Fritz-Schluender isotherm demonstrated a superior fit. Similar comparisons for reaction-based kinetic models (Pseudo-first-order < Pseudo-second-order < Pseudo-n-order) revealed that the higher-order PNO model yielded a superior fit of kinetic data for both resins. However, in some cases, adsorption isotherms and kinetic models could also be modeled by a lower-order model with minimal change in error parameters. Weber-Morris plots revealed that two linear sections are observed for each resin, where the first linear segment is attributed to fast (film diffusion) adsorption of terbium, followed by slower intraparticle diffusion of terbium through the pores as the rate-limiting step. Based on the Weber-Morris plot, both film and intraparticle diffusion are involved in controlling the kinetic rate of adsorption for DGA and LN resins.</p></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1732 ","pages":"Article 465211"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324005855","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Two commercially available extraction chromatography (EXC) resins containing N,N,N’,N’-tetra-n-octyldiglycolamide (DGA Resin, Normal, 50 – 100 μm) and Bis(2-ethylhexyl) phosphate (LN Resin, 100 – 150 μm) were used as adsorbents to study fundamental adsorption properties such as thermodynamic values, equilibrium isotherms, and kinetic uptake models for terbium(III) adsorption. Weight distribution ratios (Dw) for terbium on DGA and LN resins were measured using a [160Tb]Tb3+radiometric tracer in nitric acid as a function of acidity, temperature, initial analyte concentration, and equilibrium time. The Dw values showed increasing binding affinity for DGA resin at high nitric acid concentrations and decreasing binding affinity for LN resins. Thermodynamic studies for DGA and LN resins revealed that the Gibbs free energy (ΔG) increased consistently with temperature. To model equilibrium data, increasingly higher parameter equilibrium isotherm models (Henry (1) < Langmuir, Freundlich (2) < Redlich-Peterson (3) < Fritz-Schluender (4)) were compared on their root mean squared errors (RMSE) and adjusted determination coefficients to determine the most applicable model. In all cases, the empirical four-parameter Fritz-Schluender isotherm demonstrated a superior fit. Similar comparisons for reaction-based kinetic models (Pseudo-first-order < Pseudo-second-order < Pseudo-n-order) revealed that the higher-order PNO model yielded a superior fit of kinetic data for both resins. However, in some cases, adsorption isotherms and kinetic models could also be modeled by a lower-order model with minimal change in error parameters. Weber-Morris plots revealed that two linear sections are observed for each resin, where the first linear segment is attributed to fast (film diffusion) adsorption of terbium, followed by slower intraparticle diffusion of terbium through the pores as the rate-limiting step. Based on the Weber-Morris plot, both film and intraparticle diffusion are involved in controlling the kinetic rate of adsorption for DGA and LN resins.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.