Computer Vision Model Compression Techniques for Embedded Systems:A Survey

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Alexandre Lopes , Fernando Pereira dos Santos , Diulhio de Oliveira , Mauricio Schiezaro , Helio Pedrini
{"title":"Computer Vision Model Compression Techniques for Embedded Systems:A Survey","authors":"Alexandre Lopes ,&nbsp;Fernando Pereira dos Santos ,&nbsp;Diulhio de Oliveira ,&nbsp;Mauricio Schiezaro ,&nbsp;Helio Pedrini","doi":"10.1016/j.cag.2024.104015","DOIUrl":null,"url":null,"abstract":"<div><p>Deep neural networks have consistently represented the state of the art in most computer vision problems. In these scenarios, larger and more complex models have demonstrated superior performance to smaller architectures, especially when trained with plenty of representative data. With the recent adoption of Vision Transformer (ViT) based architectures and advanced Convolutional Neural Networks (CNNs), the total number of parameters of leading backbone architectures increased from 62M parameters in 2012 with AlexNet to 7B parameters in 2024 with AIM-7B. Consequently, deploying such deep architectures faces challenges in environments with processing and runtime constraints, particularly in embedded systems. This paper covers the main model compression techniques applied for computer vision tasks, enabling modern models to be used in embedded systems. We present the characteristics of compression subareas, compare different approaches, and discuss how to choose the best technique and expected variations when analyzing it on various embedded devices. We also share codes to assist researchers and new practitioners in overcoming initial implementation challenges for each subarea and present trends for Model Compression.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"123 ","pages":"Article 104015"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009784932400150X/pdfft?md5=4a61da15472973e3b8b39fed45db404f&pid=1-s2.0-S009784932400150X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784932400150X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks have consistently represented the state of the art in most computer vision problems. In these scenarios, larger and more complex models have demonstrated superior performance to smaller architectures, especially when trained with plenty of representative data. With the recent adoption of Vision Transformer (ViT) based architectures and advanced Convolutional Neural Networks (CNNs), the total number of parameters of leading backbone architectures increased from 62M parameters in 2012 with AlexNet to 7B parameters in 2024 with AIM-7B. Consequently, deploying such deep architectures faces challenges in environments with processing and runtime constraints, particularly in embedded systems. This paper covers the main model compression techniques applied for computer vision tasks, enabling modern models to be used in embedded systems. We present the characteristics of compression subareas, compare different approaches, and discuss how to choose the best technique and expected variations when analyzing it on various embedded devices. We also share codes to assist researchers and new practitioners in overcoming initial implementation challenges for each subarea and present trends for Model Compression.

嵌入式系统的计算机视觉模型压缩技术:调查
在大多数计算机视觉问题中,深度神经网络一直代表着最先进的技术水平。在这些场景中,更大、更复杂的模型表现出优于较小架构的性能,尤其是在使用大量代表性数据进行训练的情况下。最近,随着基于视觉转换器(ViT)的架构和高级卷积神经网络(CNN)的采用,主要骨干架构的参数总数从 2012 年 AlexNet 的 6200 万个参数增加到 2024 年 AIM-7B 的 70 亿个参数。因此,在处理和运行时间受限的环境中,特别是在嵌入式系统中部署此类深度架构面临着挑战。本文介绍了应用于计算机视觉任务的主要模型压缩技术,使现代模型能够用于嵌入式系统。我们介绍了压缩子领域的特点,比较了不同的方法,并讨论了在各种嵌入式设备上分析时如何选择最佳技术和预期变化。我们还分享了代码,以帮助研究人员和新从业人员克服每个子领域的初步实施挑战,并介绍了模型压缩的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信