Data driven prediction of fragment velocity distribution under explosive loading conditions

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY
Donghwan Noh , Piemaan Fazily , Songwon Seo , Jaekun Lee , Seungjae Seo , Hoon Huh , Jeong Whan Yoon
{"title":"Data driven prediction of fragment velocity distribution under explosive loading conditions","authors":"Donghwan Noh ,&nbsp;Piemaan Fazily ,&nbsp;Songwon Seo ,&nbsp;Jaekun Lee ,&nbsp;Seungjae Seo ,&nbsp;Hoon Huh ,&nbsp;Jeong Whan Yoon","doi":"10.1016/j.dt.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition. The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions. The paper details the finite element analysis for fragmentation, the characterizations of the dynamic hardening and fracture models, the generation of comprehensive datasets, and the training of the ANN model. The results show the influence of casing dimensions on fragment velocity distributions, with the tendencies indicating increased resultant velocity with reduced thickness, increased length and diameter. The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets, showing its potential for the real-time prediction of fragmentation performance.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"43 ","pages":"Pages 109-119"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition. The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions. The paper details the finite element analysis for fragmentation, the characterizations of the dynamic hardening and fracture models, the generation of comprehensive datasets, and the training of the ANN model. The results show the influence of casing dimensions on fragment velocity distributions, with the tendencies indicating increased resultant velocity with reduced thickness, increased length and diameter. The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets, showing its potential for the real-time prediction of fragmentation performance.
爆炸加载条件下碎片速度分布的数据驱动预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信