Sajjad Azimi, Anna Jaruga, Emily de Jong, Sylwester Arabas, Tapio Schneider
{"title":"Training Warm-Rain Bulk Microphysics Schemes Using Super-Droplet Simulations","authors":"Sajjad Azimi, Anna Jaruga, Emily de Jong, Sylwester Arabas, Tapio Schneider","doi":"10.1029/2023MS004028","DOIUrl":null,"url":null,"abstract":"<p>Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at the nano- and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is commonly represented by bulk models, which contain simplified process rates that require calibration. This study presents a framework for calibrating warm-rain bulk schemes using high-fidelity super-droplet simulations that provide a more accurate and physically based representation of cloud and precipitation processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super-droplet simulations. We demonstrate the framework's effectiveness by calibrating a single-moment bulk scheme, resulting in a reduction of data-model mismatch by more than 75% compared to the model with initial parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models and improving climate modeling.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 7","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004028","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at the nano- and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is commonly represented by bulk models, which contain simplified process rates that require calibration. This study presents a framework for calibrating warm-rain bulk schemes using high-fidelity super-droplet simulations that provide a more accurate and physically based representation of cloud and precipitation processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super-droplet simulations. We demonstrate the framework's effectiveness by calibrating a single-moment bulk scheme, resulting in a reduction of data-model mismatch by more than 75% compared to the model with initial parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models and improving climate modeling.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.