Improving the performance and long-term durability of high-temperature PEMFCs: A polyvinylpyrrolidone grafting modification strategy of polybenzimidazole membrane

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
{"title":"Improving the performance and long-term durability of high-temperature PEMFCs: A polyvinylpyrrolidone grafting modification strategy of polybenzimidazole membrane","authors":"","doi":"10.1016/j.memsci.2024.123135","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces an innovative approach to graft Polyvinylpyrrolidone (PVP) onto Polybenzimidazole (PBI) to synthesise Proton Exchange Membranes (PEMs) with high performance and durability. As a widely used hydrophilic polymer in industry, PVP can add numerous nitrogen-containing functional groups to the membrane to enhance its phosphoric acid (PA) binding ability. In this work, Polybenzimidazole-<em>graft</em>-polyvinylpyrrolidone (PVP-<em>g</em>-PBI) polymers with varying grafting degrees were synthesized and tested to investigate the impact of the grafting modification on the membrane's proton conductivity, thermal properties, and electrochemical performance. With the introduction of PVP side chains, the fuel cell showed enhanced PA uptake and substantial improvements in peak power density. Notably, PBI-g-PVP membranes with a grafting degree of 22.4 % achieved a peak power density enhancement up to 1312 mW cm⁻<sup>2</sup> at 160 °C, a 59.6 % increase over pristine PBI membranes. Due to the increased PA binding sites in the membrane, the PBI-g-PVP PEMs exhibit better PA adsorption ability and long-term durability than pristine membranes. The accelerated stress test (AST) demonstrated that the PBI-g-PVP membranes maintain a peak power density of 1105 mW cm⁻<sup>2</sup> after a 70-h test, equivalent to 183.9 % of the pristine PBI membrane. The improved fuel cell performance and durability of PBI-g-PVP PEMs underscore the potential of this grafting strategy.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376738824007294/pdfft?md5=0437a2afcb87428474bef479584d91c7&pid=1-s2.0-S0376738824007294-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824007294","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative approach to graft Polyvinylpyrrolidone (PVP) onto Polybenzimidazole (PBI) to synthesise Proton Exchange Membranes (PEMs) with high performance and durability. As a widely used hydrophilic polymer in industry, PVP can add numerous nitrogen-containing functional groups to the membrane to enhance its phosphoric acid (PA) binding ability. In this work, Polybenzimidazole-graft-polyvinylpyrrolidone (PVP-g-PBI) polymers with varying grafting degrees were synthesized and tested to investigate the impact of the grafting modification on the membrane's proton conductivity, thermal properties, and electrochemical performance. With the introduction of PVP side chains, the fuel cell showed enhanced PA uptake and substantial improvements in peak power density. Notably, PBI-g-PVP membranes with a grafting degree of 22.4 % achieved a peak power density enhancement up to 1312 mW cm⁻2 at 160 °C, a 59.6 % increase over pristine PBI membranes. Due to the increased PA binding sites in the membrane, the PBI-g-PVP PEMs exhibit better PA adsorption ability and long-term durability than pristine membranes. The accelerated stress test (AST) demonstrated that the PBI-g-PVP membranes maintain a peak power density of 1105 mW cm⁻2 after a 70-h test, equivalent to 183.9 % of the pristine PBI membrane. The improved fuel cell performance and durability of PBI-g-PVP PEMs underscore the potential of this grafting strategy.

Abstract Image

提高高温 PEMFC 的性能和长期耐久性:聚苯并咪唑膜的聚乙烯吡咯烷酮接枝改性策略
本研究介绍了一种在聚苯并咪唑(PBI)上接枝聚乙烯吡咯烷酮(PVP)的创新方法,以合成具有高性能和耐久性的质子交换膜(PEM)。作为一种在工业中广泛使用的亲水性聚合物,PVP 可以在膜上添加大量含氮官能团,以增强其与磷酸(PA)的结合能力。本研究合成并测试了不同接枝度的聚苯并咪唑-接枝-聚乙烯吡咯烷酮(PVP-g-PBI)聚合物,以研究接枝改性对膜的质子传导性、热性能和电化学性能的影响。随着 PVP 侧链的引入,燃料电池显示出更强的 PA 吸收能力,峰值功率密度也大幅提高。值得注意的是,接枝度为 22.4% 的 PBI-g-PVP 膜在 160 °C 时的峰值功率密度提高到 1312 mW cm-2,比原始 PBI 膜提高了 59.6%。由于膜中 PA 结合位点的增加,PBI-g-PVP PEM 比原始膜具有更好的 PA 吸附能力和长期耐久性。加速应力测试(AST)表明,PBI-g-PVP 膜在 70 小时测试后仍能保持 1105 mW cm-2 的峰值功率密度,相当于原始 PBI 膜的 183.9%。PBI-g-PVP PEM 燃料电池性能和耐用性的提高凸显了这种接枝策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信