Zi-fan WANG , Jia-feng FAN , Kai-wen KANG , Jian WU , Min LIU , Ke-song ZHOU , Qian ZHANG , Zhi-bo ZHANG , Xiao-qiang LI , Xiao-feng ZHANG
{"title":"Foreign object damage behavior and failure mechanism of Al2O3-modified TBCs prepared by PS-PVD","authors":"Zi-fan WANG , Jia-feng FAN , Kai-wen KANG , Jian WU , Min LIU , Ke-song ZHOU , Qian ZHANG , Zhi-bo ZHANG , Xiao-qiang LI , Xiao-feng ZHANG","doi":"10.1016/S1003-6326(24)66541-6","DOIUrl":null,"url":null,"abstract":"<div><p>Particle erosion induced by foreign object damage (FOD) is an important factor that restricts the working life of thermal barrier coatings (TBCs). A dense <em>α</em>-Al<sub>2</sub>O<sub>3</sub> overlay was prepared by magnetron sputtering and vacuum treatment on the surface of 7YSZ TBCs sprayed by plasma spray-physical vapor deposition (PS-PVD) to improve the erosion resistance of the TBCs. The FOD behavior of the TBCs was systematically studied and the interface of <em>α</em>-Al<sub>2</sub>O<sub>3</sub>/<em>c</em>-ZrO<sub>2</sub> was investigated by first principles calculations. The experimental results show that the erosion rates of the PS-PVD, atmospheric plasma spraying (APS), and electron beam-physical vapor deposition (EB-PVD) TBCs were 324, 248, and 139 μg/g, respectively, while the erosion rate of the Al<sub>2</sub>O<sub>3</sub>-modified PS-PVD TBCs was reduced to 199 μg/g. In addition, the highest interface adhesive energy of 3.88 J/m<sup>2</sup> observed in the top configuration model of Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub>−O is much higher than that of ZrO<sub>2</sub>/Ni (2.011 J/m <sup>2</sup>), which results in improved interface bonding performance.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 7","pages":"Pages 2289-2303"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632624665416/pdf?md5=0241033395b2ad48eeae699f305a4b38&pid=1-s2.0-S1003632624665416-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665416","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Particle erosion induced by foreign object damage (FOD) is an important factor that restricts the working life of thermal barrier coatings (TBCs). A dense α-Al2O3 overlay was prepared by magnetron sputtering and vacuum treatment on the surface of 7YSZ TBCs sprayed by plasma spray-physical vapor deposition (PS-PVD) to improve the erosion resistance of the TBCs. The FOD behavior of the TBCs was systematically studied and the interface of α-Al2O3/c-ZrO2 was investigated by first principles calculations. The experimental results show that the erosion rates of the PS-PVD, atmospheric plasma spraying (APS), and electron beam-physical vapor deposition (EB-PVD) TBCs were 324, 248, and 139 μg/g, respectively, while the erosion rate of the Al2O3-modified PS-PVD TBCs was reduced to 199 μg/g. In addition, the highest interface adhesive energy of 3.88 J/m2 observed in the top configuration model of Al2O3/ZrO2−O is much higher than that of ZrO2/Ni (2.011 J/m 2), which results in improved interface bonding performance.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.