The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Aaron Leininger , Sidan Lu , Jinyue Jiang , Yanhong Bian , Harold D. May , Zhiyong Jason Ren
{"title":"The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation","authors":"Aaron Leininger ,&nbsp;Sidan Lu ,&nbsp;Jinyue Jiang ,&nbsp;Yanhong Bian ,&nbsp;Harold D. May ,&nbsp;Zhiyong Jason Ren","doi":"10.1016/j.ese.2024.100459","DOIUrl":null,"url":null,"abstract":"<div><p>Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (<em>Lactococcus, Lactobacillus, Weissella</em>) to pure culture <em>Lactiplantibacillus plantarum</em> reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% <em>L. plantarum</em> retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched <em>Lactococcus</em> and <em>Klebsiella</em> spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100459"},"PeriodicalIF":14.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000735/pdfft?md5=5dcfc11c9ef5c249c1effd34b40ce3f7&pid=1-s2.0-S2666498424000735-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000735","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (Lactococcus, Lactobacillus, Weissella) to pure culture Lactiplantibacillus plantarum reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% L. plantarum retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched Lactococcus and Klebsiella spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.

Abstract Image

长期电发酵中乳酸微生物群和代谢物的融合
调节以发酵为主的微生物群中的电子传递对环境、化学、食品和医学领域有着广泛的影响。在这里,我们展示了发酵食物垃圾、沼渣和废水时的电化学控制,以提高乳酸产量。我们假设,应用阳极电位将加速和引导发酵,使其产生乳酸。在使用静态电极的纯培养植物乳杆菌反应器中引入外生/内生群落(乳球菌、乳酸杆菌、魏氏菌)的持续操作与阳极诱导过程强化的丧失有关,尽管植物乳杆菌保留了 80%。采用流化电极可以阻止生物膜的形成,并通过细胞外电子传递将电极的影响范围扩大到浮游革兰氏阳性发酵菌。虽然短期实验对乳酸球菌和克雷伯氏菌进行了不同程度的富集,但长期运行表明微生物群和产物谱趋同。这些结果突显了环境发酵微生物群对氧化还原电位扰动的功能恢复能力,强调需要更好地了解电极诱导的多微生物相互作用和生理影响,以设计可调的开放式培养或合成联合体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信