R. Newsom, R. Krishnamurthy, Duli Chand, M. Pekour, Colleen M Kaul, Donna Flynn, L. Goldberger, R. Rai, S. Wharton
{"title":"Virtual tower measurements during the American WAKE ExperimeNt (AWAKEN)","authors":"R. Newsom, R. Krishnamurthy, Duli Chand, M. Pekour, Colleen M Kaul, Donna Flynn, L. Goldberger, R. Rai, S. Wharton","doi":"10.1063/5.0206844","DOIUrl":null,"url":null,"abstract":"Dual-Doppler lidar measurements were made during the American WAKE ExperimeNt to provide height-resolved measurements of wind speed and direction at multiple locations immediately south of the leading row turbines in the King Plains wind farm in Oklahoma. These so-called virtual tower measurements were performed to characterize the inflow into the wind farm and to assess possible upwind blockage effects due to the collective action of the wind farm. The campaign was conducted from 12 November 2022 to 17 October 2023, during which time 14 unique virtual tower locations were sampled with heights ranging from 240 to 490 m AGL. The wind retrieval algorithm provided estimates of the horizontal winds and their uncertainties with a vertical resolution of about 10 m, while also accounting for the tilt of the lidar platform. The virtual tower results are compared to collocated lidar wind profiling data at the A1 site, which was located roughly 2.4 rotor diameters south of the nearest turbine. The wind speed difference between the wind profiler and the virtual tower was found to be quite sensitive to atmospheric stability and wind direction below 250 m AGL. The largest differences were observed for inflow under stable conditions, where the profiler wind speeds were observed to be about 22% lower than the virtual tower near hub height. These results suggest that there are persistent horizontal gradients in the flow upwind of the wind farm which result in biased estimates using standard ground-based lidar wind profiling methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"38 9","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0206844","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-Doppler lidar measurements were made during the American WAKE ExperimeNt to provide height-resolved measurements of wind speed and direction at multiple locations immediately south of the leading row turbines in the King Plains wind farm in Oklahoma. These so-called virtual tower measurements were performed to characterize the inflow into the wind farm and to assess possible upwind blockage effects due to the collective action of the wind farm. The campaign was conducted from 12 November 2022 to 17 October 2023, during which time 14 unique virtual tower locations were sampled with heights ranging from 240 to 490 m AGL. The wind retrieval algorithm provided estimates of the horizontal winds and their uncertainties with a vertical resolution of about 10 m, while also accounting for the tilt of the lidar platform. The virtual tower results are compared to collocated lidar wind profiling data at the A1 site, which was located roughly 2.4 rotor diameters south of the nearest turbine. The wind speed difference between the wind profiler and the virtual tower was found to be quite sensitive to atmospheric stability and wind direction below 250 m AGL. The largest differences were observed for inflow under stable conditions, where the profiler wind speeds were observed to be about 22% lower than the virtual tower near hub height. These results suggest that there are persistent horizontal gradients in the flow upwind of the wind farm which result in biased estimates using standard ground-based lidar wind profiling methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.