Degradation behavior of pure Mg in the physiological medium and growth mechanism of surface corrosion product films

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Chenyu Wang , Mingshan Sun , Chao Yang , Haiyang Wang , Jie Wang , Lin Mao , Yao Yang , Tao Ying , Paul K. Chu , Xiaoqin Zeng
{"title":"Degradation behavior of pure Mg in the physiological medium and growth mechanism of surface corrosion product films","authors":"Chenyu Wang ,&nbsp;Mingshan Sun ,&nbsp;Chao Yang ,&nbsp;Haiyang Wang ,&nbsp;Jie Wang ,&nbsp;Lin Mao ,&nbsp;Yao Yang ,&nbsp;Tao Ying ,&nbsp;Paul K. Chu ,&nbsp;Xiaoqin Zeng","doi":"10.1016/j.jma.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>Pure Mg boasting a relatively small corrosion rate is a potential biodegradable metal material for implants. However, its degradation behavior in the complex physiological environment is still a lack of understanding. In this work, we investigated the effect of corrosion product film layers on the degradation behavior of pure Mg in physiological environments. Pure Mg shows a faster corrosion rate in simulated body fluid (SBF) compared to NaCl solution. Hydrogen evolution experiments indicate that the degradation rate of pure Mg in SBF decreases rapidly within the first 12 h but stabilizes afterward. The rapid deposition of low-solubility calcium phosphate on the pure Mg in SBF provides protection to the substrate, resulting in a gradual decrease in the degradation rates. Consequently, the corrosion product film of pure Mg formed in SBF exhibits a layered structure, with the upper layer consisting of dense Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and the lower layer consisting of Mg(OH)<sub>2</sub>/MgO. Electrochemical impedance spectroscopy (EIS) shows that the resistance of the corrosion product film increases over time, indicating gradual strengthening of the corrosion resistance. The 4-week degradation results in the femoral marrow cavity of mice are consistent with the result in SBF <em>in vitro</em>.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 4","pages":"Pages 1523-1535"},"PeriodicalIF":15.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724001865","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Pure Mg boasting a relatively small corrosion rate is a potential biodegradable metal material for implants. However, its degradation behavior in the complex physiological environment is still a lack of understanding. In this work, we investigated the effect of corrosion product film layers on the degradation behavior of pure Mg in physiological environments. Pure Mg shows a faster corrosion rate in simulated body fluid (SBF) compared to NaCl solution. Hydrogen evolution experiments indicate that the degradation rate of pure Mg in SBF decreases rapidly within the first 12 h but stabilizes afterward. The rapid deposition of low-solubility calcium phosphate on the pure Mg in SBF provides protection to the substrate, resulting in a gradual decrease in the degradation rates. Consequently, the corrosion product film of pure Mg formed in SBF exhibits a layered structure, with the upper layer consisting of dense Ca3(PO4)2/Mg3(PO4)2 and the lower layer consisting of Mg(OH)2/MgO. Electrochemical impedance spectroscopy (EIS) shows that the resistance of the corrosion product film increases over time, indicating gradual strengthening of the corrosion resistance. The 4-week degradation results in the femoral marrow cavity of mice are consistent with the result in SBF in vitro.

Abstract Image

纯镁在生理介质中的降解行为及表面腐蚀产物膜的生长机理
纯镁具有相对较小的腐蚀速率,是一种潜在的生物可降解金属植入材料。然而,对其在复杂生理环境中的降解行为仍缺乏认识。在这项工作中,我们研究了腐蚀产物膜层对生理环境下纯Mg降解行为的影响。与NaCl溶液相比,纯Mg溶液在模拟体液中的腐蚀速率更快。析氢实验表明,纯Mg在SBF中的降解速率在前12 h内迅速下降,之后趋于稳定。在SBF中,低溶解度磷酸钙在纯Mg上的快速沉积为底物提供了保护,导致降解速率逐渐降低。因此,在SBF中形成的纯Mg腐蚀产物膜呈层状结构,上层由致密的Ca3(PO4)2/Mg3(PO4)2组成,下层由Mg(OH)2/MgO组成。电化学阻抗谱(EIS)表明,随着时间的推移,腐蚀产物膜的耐蚀性逐渐增强。小鼠股骨骨髓腔内4周的降解结果与体外SBF的降解结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信