Laser wavelength and sample conditioning effects on biochemical monitoring of SARS-CoV-2 VLP production upstream stage by Raman spectroscopy

IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Laser wavelength and sample conditioning effects on biochemical monitoring of SARS-CoV-2 VLP production upstream stage by Raman spectroscopy","authors":"","doi":"10.1016/j.bej.2024.109441","DOIUrl":null,"url":null,"abstract":"<div><p>This work assessed the impact of laser wavelength and sample conditioning on offline monitoring (viable cell density, cell viability, virus titer, glucose, lactate, glutamine, glutamate, and ammonium) of SARS-CoV-2 virus-like particles production upstream stage by Raman spectroscopy. The evaluated chemometrics techniques were Partial Least Squares (PLS) and Artificial Neural Networks (ANN), and different spectral filtering approaches were also considered. ANN showed better prediction capacity for most of the parameters, but ammonium and lactate, better predicted by PLS, and glutamine, no difference between modeling techniques was detected. For cell growth parameters and virus titer, samples without cells measured at 785 nm Raman laser wavelength originated better-adjusted models. This laser wavelength was also more appropriate for the remaining monitored experimental parameters except for glucose, in which the best model came from the spectral database acquired at 1064 nm wavelength. Cell remotion significantly increased the accuracy of viable cell density, cell viability, glutamate, and virus titer models. However, glucose, lactate, and ammonium models showed better prediction capacity for samples containing cells. Thus, it was demonstrated that laser wavelength, sample conditioning, spectral preprocessing, and chemometric modeling techniques need to be tailored for each experimental parameter to improve accuracy.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002286","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This work assessed the impact of laser wavelength and sample conditioning on offline monitoring (viable cell density, cell viability, virus titer, glucose, lactate, glutamine, glutamate, and ammonium) of SARS-CoV-2 virus-like particles production upstream stage by Raman spectroscopy. The evaluated chemometrics techniques were Partial Least Squares (PLS) and Artificial Neural Networks (ANN), and different spectral filtering approaches were also considered. ANN showed better prediction capacity for most of the parameters, but ammonium and lactate, better predicted by PLS, and glutamine, no difference between modeling techniques was detected. For cell growth parameters and virus titer, samples without cells measured at 785 nm Raman laser wavelength originated better-adjusted models. This laser wavelength was also more appropriate for the remaining monitored experimental parameters except for glucose, in which the best model came from the spectral database acquired at 1064 nm wavelength. Cell remotion significantly increased the accuracy of viable cell density, cell viability, glutamate, and virus titer models. However, glucose, lactate, and ammonium models showed better prediction capacity for samples containing cells. Thus, it was demonstrated that laser wavelength, sample conditioning, spectral preprocessing, and chemometric modeling techniques need to be tailored for each experimental parameter to improve accuracy.

激光波长和样品调节对拉曼光谱法监测 SARS-CoV-2 VLP 生产上游阶段生化过程的影响
这项研究通过拉曼光谱评估了激光波长和样品调节对离线监测(存活细胞密度、细胞活力、病毒滴度、葡萄糖、乳酸盐、谷氨酰胺、谷氨酸和铵)SARS-CoV-2 病毒样颗粒上游生产阶段的影响。评估的化学计量学技术包括偏最小二乘法(PLS)和人工神经网络(ANN),还考虑了不同的光谱过滤方法。ANN 对大多数参数的预测能力更强,但 PLS 对铵和乳酸盐的预测能力更强,而谷氨酰胺的预测能力则没有发现建模技术之间的差异。就细胞生长参数和病毒滴度而言,在 785 纳米拉曼激光波长下测量的无细胞样本可建立更好的调整模型。该激光波长也更适用于除葡萄糖以外的其余监测实验参数,其中最佳模型来自于 1064 nm 波长下获取的光谱数据库。细胞移动大大提高了存活细胞密度、细胞活力、谷氨酸和病毒滴度模型的准确性。然而,葡萄糖、乳酸盐和铵模型对含有细胞的样本显示出更好的预测能力。由此可见,激光波长、样品调节、光谱预处理和化学计量建模技术需要针对每个实验参数进行调整,以提高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Engineering Journal
Biochemical Engineering Journal 工程技术-工程:化工
CiteScore
7.10
自引率
5.10%
发文量
380
审稿时长
34 days
期刊介绍: The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology. The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields: Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics Biosensors and Biodevices including biofabrication and novel fuel cell development Bioseparations including scale-up and protein refolding/renaturation Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells Bioreactor Systems including characterization, optimization and scale-up Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis Protein Engineering including enzyme engineering and directed evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信