Beata Derȩgowska , Barbara Lewandowska , Grzegorz Lewicki
{"title":"Minimal projections onto subspaces generated by sign-matrices","authors":"Beata Derȩgowska , Barbara Lewandowska , Grzegorz Lewicki","doi":"10.1016/j.jat.2024.106084","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to calculate relative and absolute projection constants of certain subspaces of <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup></math></span> generated by eigenvectors of sign matrices. The main tool in our considerations is so called Chalmers–Metcalf operator (see Chalmers & Metcalf (1994) and Lewicki & Prophet (2021)). Also, some results from Castejon & Lewicki (2014) and Castejon & Lewicki (2019) will be applied.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000728","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to calculate relative and absolute projection constants of certain subspaces of and generated by eigenvectors of sign matrices. The main tool in our considerations is so called Chalmers–Metcalf operator (see Chalmers & Metcalf (1994) and Lewicki & Prophet (2021)). Also, some results from Castejon & Lewicki (2014) and Castejon & Lewicki (2019) will be applied.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.