Thermally stable and self-healable lignin-based polyester

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Peter K. Karoki , Shuyang Zhang , Charles M. Cai , Paul E. Dim , Arthur J. Ragauskas
{"title":"Thermally stable and self-healable lignin-based polyester","authors":"Peter K. Karoki ,&nbsp;Shuyang Zhang ,&nbsp;Charles M. Cai ,&nbsp;Paul E. Dim ,&nbsp;Arthur J. Ragauskas","doi":"10.1016/j.polymertesting.2024.108515","DOIUrl":null,"url":null,"abstract":"<div><p>The increased use of plastics and the associated environmental impact has catalyzed research on the development of bio-derived polymers. Bio-based polyesters have gained increased attention due to the abundance of their starting materials and ease of processing. Lignin is naturally occurring in biomass with rich carbon content, whose functionality and rigidity make it an ideal bio-derived candidate for bio-based polyesters. Herein, a lignin-based polyester with good thermal stability and self-repairability was synthesized from carboxylated lignin and epoxidized soybean oil. The synthesized lignin/epoxidized soybean oil (ESO) vitrimer was brittle such that its mechanical performance could not be recorded. However, when polyethylene glycol (PEG) was incorporated as a plasticizer, polymer samples exhibited acceptable ductility. From thermomechanical analysis of the synthesized polyesters, the plasticizer did not impair thermal stability of polymers, but greatly enhanced mechanical properties. Notably, all samples exhibited stability at high temperatures, and good glass transition temperatures (51.0 ± 0.9–78.0 ± 1.2 °C). The highest tensile strength (3.983 ± 0.1 MPa) and storage modulus (1463.67 ± 12.6 MPa) were recorded for the polyester containing 6 % w/w PEG. Moreover, the polymer samples exhibited self-healing capability at 180 °C. This work expands on valorization of lignin through the synthesis of bio-derived materials.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"137 ","pages":"Article 108515"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824001922/pdfft?md5=947377d7f04f604dd86b0e1bf2a8c445&pid=1-s2.0-S0142941824001922-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824001922","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The increased use of plastics and the associated environmental impact has catalyzed research on the development of bio-derived polymers. Bio-based polyesters have gained increased attention due to the abundance of their starting materials and ease of processing. Lignin is naturally occurring in biomass with rich carbon content, whose functionality and rigidity make it an ideal bio-derived candidate for bio-based polyesters. Herein, a lignin-based polyester with good thermal stability and self-repairability was synthesized from carboxylated lignin and epoxidized soybean oil. The synthesized lignin/epoxidized soybean oil (ESO) vitrimer was brittle such that its mechanical performance could not be recorded. However, when polyethylene glycol (PEG) was incorporated as a plasticizer, polymer samples exhibited acceptable ductility. From thermomechanical analysis of the synthesized polyesters, the plasticizer did not impair thermal stability of polymers, but greatly enhanced mechanical properties. Notably, all samples exhibited stability at high temperatures, and good glass transition temperatures (51.0 ± 0.9–78.0 ± 1.2 °C). The highest tensile strength (3.983 ± 0.1 MPa) and storage modulus (1463.67 ± 12.6 MPa) were recorded for the polyester containing 6 % w/w PEG. Moreover, the polymer samples exhibited self-healing capability at 180 °C. This work expands on valorization of lignin through the synthesis of bio-derived materials.

Abstract Image

热稳定性和自愈性木质素基聚酯
塑料使用量的增加及其对环境的影响催化了生物聚合物的开发研究。生物基聚酯因其起始材料丰富且易于加工而受到越来越多的关注。木质素天然存在于含碳量丰富的生物质中,其功能性和刚性使其成为生物基聚酯的理想生物衍生候选材料。本文以羧化木质素和环氧化大豆油为原料,合成了一种具有良好热稳定性和自修复性的木质素基聚酯。合成的木质素/环氧化大豆油(ESO)三聚体较脆,因此无法记录其机械性能。然而,当加入聚乙二醇(PEG)作为增塑剂时,聚合物样品表现出了可接受的延展性。从合成聚酯的热力学分析来看,增塑剂并没有损害聚合物的热稳定性,但却大大提高了机械性能。值得注意的是,所有样品都具有高温稳定性和良好的玻璃化转变温度(51.0 ± 0.9-78.0 ± 1.2 °C)。含 6% w/w PEG 的聚酯的拉伸强度(3.983 ± 0.1 兆帕)和储存模量(1463.67 ± 12.6 兆帕)最高。此外,聚合物样品在 180 °C 时还表现出自愈合能力。这项工作通过合成生物衍生材料拓展了木质素的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信