Wanli Xie , Yitong Wang , Fangpei Li , Wenbo Peng , Yongning He
{"title":"Piezo-phototronic and pyro-phototronic effects enabled advanced high-performance metal halide perovskite optoelectronics","authors":"Wanli Xie , Yitong Wang , Fangpei Li , Wenbo Peng , Yongning He","doi":"10.1016/j.mtelec.2024.100110","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, metal halide perovskite materials have been successfully adopted in various optoelectronic applications, owing to their remarkable material properties. Notably, the piezo-phototronic effect (a coining effect of piezoelectric, semiconducting and photoexcitation properties) in metal halide perovskite can be expected to further enhance device performances. In this review, we provide a comprehensive overview of metal halide perovskite materials and their recent advancements through the utilization of the piezo-phototronic effect and the pyro-phototronic effect. Firstly, the molecular structure, growing methods, optical and piezoelectric properties of perovskite are discussed. Subsequently, this review delves into the fundamental principles and practical applications of the piezo-phototronic effect, emphasizing its significance in diverse fields such as. Thirdly, recent studies on the pyro-phototronic effect, spintronics, and light emission are surveyed. Last but not least, challenges that may hinder the development of the piezo-phototronic effect and pyro-phototronic effect in perovskites are summarized. This review emphasizes the advances in the application of the piezo-/pyro-phototronic effect in perovskite-based optoelectronic devices. It aims to provide a comprehensive understanding of the piezo-/pyro-phototronic effect as an effective tool to enhance device performances as well as to inspire potential design for high-performance perovskite-based optoelectronic devices in the future.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"9 ","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000226/pdfft?md5=9f158482c779c4e00ad3636f78add295&pid=1-s2.0-S2772949424000226-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949424000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, metal halide perovskite materials have been successfully adopted in various optoelectronic applications, owing to their remarkable material properties. Notably, the piezo-phototronic effect (a coining effect of piezoelectric, semiconducting and photoexcitation properties) in metal halide perovskite can be expected to further enhance device performances. In this review, we provide a comprehensive overview of metal halide perovskite materials and their recent advancements through the utilization of the piezo-phototronic effect and the pyro-phototronic effect. Firstly, the molecular structure, growing methods, optical and piezoelectric properties of perovskite are discussed. Subsequently, this review delves into the fundamental principles and practical applications of the piezo-phototronic effect, emphasizing its significance in diverse fields such as. Thirdly, recent studies on the pyro-phototronic effect, spintronics, and light emission are surveyed. Last but not least, challenges that may hinder the development of the piezo-phototronic effect and pyro-phototronic effect in perovskites are summarized. This review emphasizes the advances in the application of the piezo-/pyro-phototronic effect in perovskite-based optoelectronic devices. It aims to provide a comprehensive understanding of the piezo-/pyro-phototronic effect as an effective tool to enhance device performances as well as to inspire potential design for high-performance perovskite-based optoelectronic devices in the future.