Cwikel–Lieb–Rozenblum type inequalities for Hardy–Schrödinger operator

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Giao Ky Duong , Rupert L. Frank , Thi Minh Thao Le , Phan Thành Nam , Phuoc-Tai Nguyen
{"title":"Cwikel–Lieb–Rozenblum type inequalities for Hardy–Schrödinger operator","authors":"Giao Ky Duong ,&nbsp;Rupert L. Frank ,&nbsp;Thi Minh Thao Le ,&nbsp;Phan Thành Nam ,&nbsp;Phuoc-Tai Nguyen","doi":"10.1016/j.matpur.2024.103598","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a Cwikel–Lieb–Rozenblum type inequality for the number of negative eigenvalues of the Hardy–Schrödinger operator <span><math><mo>−</mo><mi>Δ</mi><mo>−</mo><msup><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><mn>4</mn><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>−</mo><mi>W</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. The bound is given in terms of a weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>-norm of <em>W</em> which is sharp in both large and small coupling regimes. We also obtain a similar bound for the fractional Laplacian.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000965/pdfft?md5=a35059620cbd155cbff55da815180898&pid=1-s2.0-S0021782424000965-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a Cwikel–Lieb–Rozenblum type inequality for the number of negative eigenvalues of the Hardy–Schrödinger operator Δ(d2)2/(4|x|2)W(x) on L2(Rd). The bound is given in terms of a weighted Ld/2-norm of W which is sharp in both large and small coupling regimes. We also obtain a similar bound for the fractional Laplacian.

哈代-薛定谔算子的 Cwikel-Lieb-Rozenblum 型不等式
我们证明了哈代-薛定谔算子-Δ-(d-2)2/(4|x|2)-W(x) 在 L2(Rd) 上负特征值数量的 Cwikel-Lieb-Rozenblum 型不等式。该约束是通过 W 的加权 Ld/2 准则给出的,在大耦合和小耦合情况下都很尖锐。我们还得到了分数拉普拉卡方的类似约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信