{"title":"Resource and trajectory optimization for UAV-assisted MEC communication systems over unlicensed spectrum band","authors":"Errong Pei , Xinhu Chen , Lin Zhang , Yun Li","doi":"10.1016/j.adhoc.2024.103608","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>new radio unlicensed</em> (NR-U) technology is proposed by 3GPP to extend NR to the unlicensed spectrum because of the shortage of the licensed spectrum. Different from the ground and fixed communication equipment-based unlicensed spectrum access scheme, the <em>unmanned aerial vehicle</em> (UAV) mobile platform-based unlicensed spectrum access scheme is not only related to incumbent users but also its trajectory and resource allocation. Therefore, this paper proposes a hybrid unlicensed spectrum access scheme for the UAV-assisted unlicensed <em>mobile edge computing</em> (MEC) communication (UAUM) system, where each flight time slot of the UAV is divided into two parts: <em>power free</em> (PF) and <em>power controlled</em> (PC) stages. In the PF stage, the transmit power is only restrained by the unlicensed spectrum regulations, and thus the UAV can provide high-rate services for <em>real-time downlink users</em> (RDUs) and <em>uplink computing users</em> (UCUs). In the PC stage, the transmit power of the UAV is mainly restrained by the interference to WiFi devices, and thus UAV can be allowed to provide low-rate services for <em>non-realtime downlink users</em> (NDUs) without affecting WiFi users. Based on the proposed scheme, a multi-variable optimization problem regarding trajectory, bandwidth, transmit power, and duty cycle is formulated to maximize the total offloaded computing bits on the premise of ensuring the quality of experience of RDUs, NDUs, and WiFi users under the maximum energy budget. To solve this problem efficiently, we propose an iterative algorithm based on the block coordinate descent method and successive convex approximation technique to decompose the original problem into four optimization subproblems of trajectory, bandwidth, transmit power and duty cycle, which are then solved alternatively in an iterative manner. A large number of simulation results demonstrate that in terms of spectrum efficiency and total offloaded computing bits, the proposed algorithm outperforms other unlicensed spectrum access schemes and optimization algorithms. The other performances of the proposed algorithm are deeply evaluated to prove its effectiveness and feasibility.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002191","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The new radio unlicensed (NR-U) technology is proposed by 3GPP to extend NR to the unlicensed spectrum because of the shortage of the licensed spectrum. Different from the ground and fixed communication equipment-based unlicensed spectrum access scheme, the unmanned aerial vehicle (UAV) mobile platform-based unlicensed spectrum access scheme is not only related to incumbent users but also its trajectory and resource allocation. Therefore, this paper proposes a hybrid unlicensed spectrum access scheme for the UAV-assisted unlicensed mobile edge computing (MEC) communication (UAUM) system, where each flight time slot of the UAV is divided into two parts: power free (PF) and power controlled (PC) stages. In the PF stage, the transmit power is only restrained by the unlicensed spectrum regulations, and thus the UAV can provide high-rate services for real-time downlink users (RDUs) and uplink computing users (UCUs). In the PC stage, the transmit power of the UAV is mainly restrained by the interference to WiFi devices, and thus UAV can be allowed to provide low-rate services for non-realtime downlink users (NDUs) without affecting WiFi users. Based on the proposed scheme, a multi-variable optimization problem regarding trajectory, bandwidth, transmit power, and duty cycle is formulated to maximize the total offloaded computing bits on the premise of ensuring the quality of experience of RDUs, NDUs, and WiFi users under the maximum energy budget. To solve this problem efficiently, we propose an iterative algorithm based on the block coordinate descent method and successive convex approximation technique to decompose the original problem into four optimization subproblems of trajectory, bandwidth, transmit power and duty cycle, which are then solved alternatively in an iterative manner. A large number of simulation results demonstrate that in terms of spectrum efficiency and total offloaded computing bits, the proposed algorithm outperforms other unlicensed spectrum access schemes and optimization algorithms. The other performances of the proposed algorithm are deeply evaluated to prove its effectiveness and feasibility.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.