{"title":"Side chain modulated ferrocene derivative as the interstitial conductive medium for high-performance and stable perovskite solar cells","authors":"","doi":"10.1016/j.jechem.2024.07.021","DOIUrl":null,"url":null,"abstract":"<div><p>The interfacial nonradiative recombination loss caused by the deep traps and mismatched band alignment restrained the commercial viability of perovskite solar cells (PSCs). Herein, we have constructed ferrocene carboxylic acid (FcA) and octafluoropentyl-ferrocenyl-carboxylate (OFFcA) interstitial conductive mediums to modulate the integral heterointerface properties and the photovoltaic performances of PSCs. By comparing the passivation strengths of the two molecules, we found that the synergistic effects among Fc/Fc<sup>+</sup> redox shuttle, C=O group, and F substituents realize the optimal elimination of interfacial trap sources. Electron-withdrawing F groups reinforce the capacity of the Fc/Fc<sup>+</sup> redox shuttle for the healing of metallic Pb defects and provide extensive anchoring sites to stabilize the organic components. Additionally, the homogeneity of the OFFcA layer as well as the humidity stability of perovskite film are facilitated through the introduction of F substituents, which reduce the contact resistance and improve the interfacial charge transfer. The champion OFFcA-modified device delivers an exceptional PCE of 23.62%, exceeding those of the control (PCE=22.32%) and FcA-modified (PCE=23.06%) devices. Moreover, the unencapsulated OFFcA-modified device retains 82.7% of the primary efficiency at 60% RH for more than 50 d and only loses less than 10% of the primary efficiency when stored in a glove box for more than 2000 h.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624004947","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The interfacial nonradiative recombination loss caused by the deep traps and mismatched band alignment restrained the commercial viability of perovskite solar cells (PSCs). Herein, we have constructed ferrocene carboxylic acid (FcA) and octafluoropentyl-ferrocenyl-carboxylate (OFFcA) interstitial conductive mediums to modulate the integral heterointerface properties and the photovoltaic performances of PSCs. By comparing the passivation strengths of the two molecules, we found that the synergistic effects among Fc/Fc+ redox shuttle, C=O group, and F substituents realize the optimal elimination of interfacial trap sources. Electron-withdrawing F groups reinforce the capacity of the Fc/Fc+ redox shuttle for the healing of metallic Pb defects and provide extensive anchoring sites to stabilize the organic components. Additionally, the homogeneity of the OFFcA layer as well as the humidity stability of perovskite film are facilitated through the introduction of F substituents, which reduce the contact resistance and improve the interfacial charge transfer. The champion OFFcA-modified device delivers an exceptional PCE of 23.62%, exceeding those of the control (PCE=22.32%) and FcA-modified (PCE=23.06%) devices. Moreover, the unencapsulated OFFcA-modified device retains 82.7% of the primary efficiency at 60% RH for more than 50 d and only loses less than 10% of the primary efficiency when stored in a glove box for more than 2000 h.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy