The p-Adic Schrödinger equation and the two-slit experiment in quantum mechanics

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
W.A. Zúñiga-Galindo
{"title":"The p-Adic Schrödinger equation and the two-slit experiment in quantum mechanics","authors":"W.A. Zúñiga-Galindo","doi":"10.1016/j.aop.2024.169747","DOIUrl":null,"url":null,"abstract":"<div><p><span><math><mi>p</mi></math></span>-Adic quantum mechanics is constructed from the Dirac–von Neumann axioms identifying quantum states with square-integrable functions on the <span><math><mi>N</mi></math></span>-dimensional <span><math><mi>p</mi></math></span>-adic space, <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>N</mi></mrow></msubsup></math></span>. This choice is equivalent to the hypothesis of the discreteness of the space. The time is assumed to be a real variable. The <span><math><mi>p</mi></math></span>-adic quantum mechanics is motivated by the question: what happens with the standard quantum mechanics if the space has a discrete nature? The time evolution of a quantum state is controlled by a nonlocal Schrödinger equation obtained from a <span><math><mi>p</mi></math></span>-adic heat equation by a temporal Wick rotation. This <span><math><mi>p</mi></math></span>-adic heat equation describes a particle performing a random motion in <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>N</mi></mrow></msubsup></math></span>. The Hamiltonian is a nonlocal operator; thus, the Schrödinger equation describes the evolution of a quantum state under nonlocal interactions. In this framework, the Schrödinger equation admits complex-valued plane wave solutions, which we interpret as <span><math><mi>p</mi></math></span>-adic de Broglie waves. These mathematical waves have all wavelength <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. In the <span><math><mi>p</mi></math></span>-adic framework, the double-slit experiment cannot be explained using the interference of the de Broglie waves. The wavefunctions can be represented as convergent series in the de Broglie waves, but the <span><math><mi>p</mi></math></span>-adic de Broglie waves are just mathematical objects. Only the square of the modulus of a wave function has a physical meaning as a time-dependent probability density. These probability densities exhibit interference patterns similar to the ones produced by ‘quantum waves’. In the <span><math><mi>p</mi></math></span>-adic framework, in the double-slit experiment, each particle goes through one slit only. The <span><math><mi>p</mi></math></span>-adic quantum mechanics is an analog (or model) of the standard one under the hypothesis of the existence of a Planck length. The precise connection between these two theories is an open problem. Finally, we propose the conjecture that the classical de Broglie wave-particle duality is a manifestation of the discreteness of space–time.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"469 ","pages":"Article 169747"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001544","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

p-Adic quantum mechanics is constructed from the Dirac–von Neumann axioms identifying quantum states with square-integrable functions on the N-dimensional p-adic space, QpN. This choice is equivalent to the hypothesis of the discreteness of the space. The time is assumed to be a real variable. The p-adic quantum mechanics is motivated by the question: what happens with the standard quantum mechanics if the space has a discrete nature? The time evolution of a quantum state is controlled by a nonlocal Schrödinger equation obtained from a p-adic heat equation by a temporal Wick rotation. This p-adic heat equation describes a particle performing a random motion in QpN. The Hamiltonian is a nonlocal operator; thus, the Schrödinger equation describes the evolution of a quantum state under nonlocal interactions. In this framework, the Schrödinger equation admits complex-valued plane wave solutions, which we interpret as p-adic de Broglie waves. These mathematical waves have all wavelength p1. In the p-adic framework, the double-slit experiment cannot be explained using the interference of the de Broglie waves. The wavefunctions can be represented as convergent series in the de Broglie waves, but the p-adic de Broglie waves are just mathematical objects. Only the square of the modulus of a wave function has a physical meaning as a time-dependent probability density. These probability densities exhibit interference patterns similar to the ones produced by ‘quantum waves’. In the p-adic framework, in the double-slit experiment, each particle goes through one slit only. The p-adic quantum mechanics is an analog (or model) of the standard one under the hypothesis of the existence of a Planck length. The precise connection between these two theories is an open problem. Finally, we propose the conjecture that the classical de Broglie wave-particle duality is a manifestation of the discreteness of space–time.

量子力学中的 p-adic 薛定谔方程和双缝实验
p-adic 量子力学是根据狄拉克-冯-诺依曼公理构建的,该公理将量子态与 N 维 p-adic 空间 QpN 上的平方可积分函数相标识。这一选择等同于空间离散性假设。时间被假定为实变量。p-adic 量子力学是由这样一个问题激发的:如果空间具有离散性,标准量子力学会怎样?量子态的时间演化受控于一个非局域薛定谔方程,该方程由一个 p-adic 热方程通过时域威克旋转得到。这个 p-adic 热方程描述了一个粒子在 QpN 中的随机运动。哈密顿是一个非局部算子;因此,薛定谔方程描述了量子态在非局部相互作用下的演化。在这个框架中,薛定谔方程包含复值平面波解,我们将其解释为 p-adic de Broglie 波。这些数学波的波长都是 p-1。在 p-adic 框架中,双缝实验无法用德布罗格利波的干涉来解释。波函数可以表示为德布罗格利波的收敛级数,但 p-adic 德布罗格利波只是数学对象。只有波函数的模的平方作为随时间变化的概率密度才具有物理意义。这些概率密度表现出的干涉模式与 "量子波 "产生的干涉模式相似。在 p-adic 框架中,在双缝实验中,每个粒子只通过一个缝。在存在普朗克长度的假设下,p-adic 量子力学是标准量子力学的类似物(或模型)。这两种理论之间的精确联系是一个悬而未决的问题。最后,我们提出了一个猜想,即经典的德-布罗格里波粒二象性是时空离散性的一种表现形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信