On the norm of the Hilbert matrix operator on weighted Bergman spaces

IF 1.7 2区 数学 Q1 MATHEMATICS
Jineng Dai
{"title":"On the norm of the Hilbert matrix operator on weighted Bergman spaces","authors":"Jineng Dai","doi":"10.1016/j.jfa.2024.110587","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that the norm of the Hilbert matrix operator on weighted Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> was conjectured by Karapetrović to be <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mi>sin</mi><mo>⁡</mo><mfrac><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo><mi>π</mi></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></mfrac></math></span> when <span><math><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>&gt;</mo><mi>α</mi><mo>+</mo><mn>2</mn></math></span>. The conjecture has been confirmed by Božin and Karapetrović in the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>. In this paper we prove the conjecture for the cases both <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>47</mn></mrow></mfrac></math></span>. Moreover, we also show that the conjecture is valid when <span><math><mo>−</mo><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>≥</mo><mn>2</mn><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002751","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that the norm of the Hilbert matrix operator on weighted Bergman spaces Aαp was conjectured by Karapetrović to be πsin(α+2)πp when α>1 and p>α+2. The conjecture has been confirmed by Božin and Karapetrović in the case α=0. In this paper we prove the conjecture for the cases both α=1 and 0<α147. Moreover, we also show that the conjecture is valid when 1<α<0 and p2(α+2).

论加权伯格曼空间上希尔伯特矩阵算子的规范
众所周知,卡拉佩特罗维奇曾猜想加权伯格曼空间上的希尔伯特矩阵算子 Aαp 的规范在 α>-1 和 p>α+2 时为 πsin(α+2)πp 。在本文中,我们证明了 α=1 和 0<α≤147 两种情况下的猜想。此外,我们还证明了当-1<α<0 和 p≥2(α+2) 时,猜想是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信