Duarte Sampaio de Almeida , Fernando Brito e Abreu , Inês Boavida-Portugal
{"title":"Agent-based simulation of non-urgent egress from mass events in open public spaces","authors":"Duarte Sampaio de Almeida , Fernando Brito e Abreu , Inês Boavida-Portugal","doi":"10.1016/j.simpat.2024.103002","DOIUrl":null,"url":null,"abstract":"<div><p>Public mass events require thorough planning on allocating resources such as paramedics, police officers, urban cleaning teams, and their equipment (ambulances, patrol cars, garbage collection trucks, and other urban cleaning vehicles). Testing different scenarios of event venue layout and crowd behavior at the end of an event might be useful to plan the event and said resource allocation.</p><p>Our main objective is to model the non-urgent egress of participants at the end of an event, with possible applications for event management. That is when some resources are released (police and paramedics) and others are requested (urban cleaning teams).</p><p>Using the agent-based GAMA platform, we implemented a spatially explicit simulation model upon an extension of the Social Force Model that considers group behavior, and a novel implementation of the “social retention” phenomenon, to simulate non-urgent egress from public space mass gathering events. Focus groups with architecture, geography, and urban ergonomics experts were conducted for face validation and improvement of the model.</p><p>We present the outcome of a series of simulations of a scenario mimicking a real-life music event that took place in a square in downtown Lisbon, Portugal. Cell phone data captured during the event was used to calibrate the model. We analyzed model performance when the number of pedestrian agents increases, to assess the feasibility of using our approach in participatory discussions with stakeholders responsible for resources management.</p><p>On average, the egress evolution obtained in the simulations fit well with the evolution of cell phone counts captured during the event. The behavior of groups of agents evidenced real-life phenomena, such as the persistence of group cohesion and repulsion interactions (both with architectural obstacles and other agents).</p><p>Model performance degradation with the increasing number of agents may hamper the usage of this model/platform for participatory meetings, due to the incurred delay in obtaining results. To mitigate this problem, we plan to explore parallelization strategies for agent-based simulation, such as using GPUs.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103002"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001163","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Public mass events require thorough planning on allocating resources such as paramedics, police officers, urban cleaning teams, and their equipment (ambulances, patrol cars, garbage collection trucks, and other urban cleaning vehicles). Testing different scenarios of event venue layout and crowd behavior at the end of an event might be useful to plan the event and said resource allocation.
Our main objective is to model the non-urgent egress of participants at the end of an event, with possible applications for event management. That is when some resources are released (police and paramedics) and others are requested (urban cleaning teams).
Using the agent-based GAMA platform, we implemented a spatially explicit simulation model upon an extension of the Social Force Model that considers group behavior, and a novel implementation of the “social retention” phenomenon, to simulate non-urgent egress from public space mass gathering events. Focus groups with architecture, geography, and urban ergonomics experts were conducted for face validation and improvement of the model.
We present the outcome of a series of simulations of a scenario mimicking a real-life music event that took place in a square in downtown Lisbon, Portugal. Cell phone data captured during the event was used to calibrate the model. We analyzed model performance when the number of pedestrian agents increases, to assess the feasibility of using our approach in participatory discussions with stakeholders responsible for resources management.
On average, the egress evolution obtained in the simulations fit well with the evolution of cell phone counts captured during the event. The behavior of groups of agents evidenced real-life phenomena, such as the persistence of group cohesion and repulsion interactions (both with architectural obstacles and other agents).
Model performance degradation with the increasing number of agents may hamper the usage of this model/platform for participatory meetings, due to the incurred delay in obtaining results. To mitigate this problem, we plan to explore parallelization strategies for agent-based simulation, such as using GPUs.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.