An arbitrary Lagrangian–Eulerian positivity-preserving finite volume scheme for radiation hydrodynamics equations in the equilibrium-diffusion limit

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gang Peng , Di Yang
{"title":"An arbitrary Lagrangian–Eulerian positivity-preserving finite volume scheme for radiation hydrodynamics equations in the equilibrium-diffusion limit","authors":"Gang Peng ,&nbsp;Di Yang","doi":"10.1016/j.cam.2024.116156","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an arbitrary Lagrangian–Eulerian (ALE) positivity-preserving finite volume scheme is constructed for radiation hydrodynamics equations (RHE) in the equilibrium-diffusion limit. Firstly, the integral form equations of RHE in the ALE framework are presented. Then, the operator-splitting method is applied to divide the equations into hyperbolic part and parabolic part. In addition, a second-order positivity-preserving finite volume scheme is constructed for the hyperbolic part based on MUSCL reconstruction. The vertex velocity is obtained by the predictor–corrector strategy. The Winslow method is applied to improve the quality of the Lagrangian mesh. Furthermore, a nonlinear positivity-preserving finite volume scheme suitable for distorted mesh is proposed for the parabolic part. Finally, some numerical examples are given to show the accuracy and reliability of the numerical scheme.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an arbitrary Lagrangian–Eulerian (ALE) positivity-preserving finite volume scheme is constructed for radiation hydrodynamics equations (RHE) in the equilibrium-diffusion limit. Firstly, the integral form equations of RHE in the ALE framework are presented. Then, the operator-splitting method is applied to divide the equations into hyperbolic part and parabolic part. In addition, a second-order positivity-preserving finite volume scheme is constructed for the hyperbolic part based on MUSCL reconstruction. The vertex velocity is obtained by the predictor–corrector strategy. The Winslow method is applied to improve the quality of the Lagrangian mesh. Furthermore, a nonlinear positivity-preserving finite volume scheme suitable for distorted mesh is proposed for the parabolic part. Finally, some numerical examples are given to show the accuracy and reliability of the numerical scheme.

平衡扩散极限辐射流体力学方程的任意拉格朗日-欧勒正保有限体积方案
本文构建了平衡扩散极限下辐射流体力学方程(RHE)的任意拉格朗日-欧勒(ALE)正保有限体积方案。首先,介绍了 ALE 框架下的 RHE 积分方程。然后,应用算子分割法将方程分为双曲部分和抛物部分。此外,基于 MUSCL 重构,为双曲部分构建了二阶保正有限体积方案。顶点速度通过预测器-校正器策略获得。采用温斯洛方法提高拉格朗日网格的质量。此外,还针对抛物线部分提出了一种适用于扭曲网格的非线性保正值有限体积方案。最后,给出了一些数值示例,以说明数值方案的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信