Optical and electrochemical analysis of nitrogen-doped carbon quantum dots from Moosa balbeesiaana peels for advanced supercapacitor applications

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Optical and electrochemical analysis of nitrogen-doped carbon quantum dots from Moosa balbeesiaana peels for advanced supercapacitor applications","authors":"","doi":"10.1016/j.cartre.2024.100381","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for suitable electrode materials for energy storage devices, driven by increasing energy needs and environmental concerns, has led to the investigation of green synthesis methods. In this study, a composite material (rGO@NCQDs) comprising nitrogen-doped carbon quantum dots (NCQDs) derived from <em>Moosa balbeesiaana</em> peels and reduced graphene oxide (rGO) was synthesized via hydrothermal methods to evaluate its photophysical properties and electrochemical performance for supercapacitors applications. Additionally, the electrochemical behavior of rGO<img>NCQDs combined with Vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) was explored.</p><p>Characterization techniques including FTIR spectroscopy revealed typical carbon-based material features in rGO-decorated NCQDs, and rGO<img>NCQDs@V<sub>2</sub>O<sub>5</sub> composite. SEM analysis illustrated distinctive surface structures (mushroom-shaped for rGO@NCQDs and flowered-shaped for rGO<img>NCQDs@V2O5), while XRD confirmed crystalline structures with specific sizes.</p><p>Photophysical investigations demonstrated significant Solvatochromic shifts and strong solute-solvent interactions in the composites. Electrochemical studies, including cyclic Voltammetry and Galvanostatic measurements, exhibited promising performance metrics. Specifically, rGO@NCQDs demonstrated a specific capacitance of 134.68 Fg<sup>−1</sup> with excellent retention over 5000 charge-discharge cycles. In contrast, rGO<img>NCQDs@V<sub>2</sub>O<sub>5</sub> exhibited a maximum specific capacitance of 562.62 Fg<sup>−1</sup> at a scan rate of 10 mVs<sup>−1</sup> and exceptional cycle stability (96 % retention over 5000 cycles).</p><p>These findings highlight the potential of the synthesized composites as efficient electrode materials for supercapacitors, offering enhanced electrochemical performance and stability. The study underscores the importance of green synthesis approaches in developing functional materials for sustainable energy storage applications.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000622/pdfft?md5=59dbb9941ac8cb7410a76e4329fdfe83&pid=1-s2.0-S2667056924000622-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for suitable electrode materials for energy storage devices, driven by increasing energy needs and environmental concerns, has led to the investigation of green synthesis methods. In this study, a composite material (rGO@NCQDs) comprising nitrogen-doped carbon quantum dots (NCQDs) derived from Moosa balbeesiaana peels and reduced graphene oxide (rGO) was synthesized via hydrothermal methods to evaluate its photophysical properties and electrochemical performance for supercapacitors applications. Additionally, the electrochemical behavior of rGONCQDs combined with Vanadium pentoxide (V2O5) was explored.

Characterization techniques including FTIR spectroscopy revealed typical carbon-based material features in rGO-decorated NCQDs, and rGONCQDs@V2O5 composite. SEM analysis illustrated distinctive surface structures (mushroom-shaped for rGO@NCQDs and flowered-shaped for rGONCQDs@V2O5), while XRD confirmed crystalline structures with specific sizes.

Photophysical investigations demonstrated significant Solvatochromic shifts and strong solute-solvent interactions in the composites. Electrochemical studies, including cyclic Voltammetry and Galvanostatic measurements, exhibited promising performance metrics. Specifically, rGO@NCQDs demonstrated a specific capacitance of 134.68 Fg−1 with excellent retention over 5000 charge-discharge cycles. In contrast, rGONCQDs@V2O5 exhibited a maximum specific capacitance of 562.62 Fg−1 at a scan rate of 10 mVs−1 and exceptional cycle stability (96 % retention over 5000 cycles).

These findings highlight the potential of the synthesized composites as efficient electrode materials for supercapacitors, offering enhanced electrochemical performance and stability. The study underscores the importance of green synthesis approaches in developing functional materials for sustainable energy storage applications.

用于先进超级电容器的 Moosa balbeesiaana 果皮掺氮碳量子点的光学和电化学分析
在能源需求和环境问题日益增长的推动下,储能设备对合适电极材料的需求促使人们开始研究绿色合成方法。本研究通过水热法合成了一种复合材料(rGO@NCQDs),该材料由掺氮的碳量子点(NCQDs)和还原型氧化石墨烯(rGO)组成,以评估其在超级电容器应用中的光物理特性和电化学性能。包括傅立叶变换红外光谱在内的表征技术揭示了 rGO 装饰的 NCQDs 和 rGONCQDs@V2O5 复合材料中典型的碳基材料特征。扫描电镜分析显示了独特的表面结构(rGO@NCQDs 为蘑菇状,rGONCQDs@V2O5 为花状),而 XRD 则证实了具有特定尺寸的晶体结构。电化学研究,包括循环伏安法和伽马静电测量,都显示出良好的性能指标。具体而言,rGO@NCQDs 的比电容为 134.68 Fg-1,在 5000 次充放电循环中保持良好。相比之下,rGONCQDs@V2O5 在扫描速率为 10 mVs-1 时的最大比电容为 562.62 Fg-1,并且具有优异的循环稳定性(5000 次循环保持率为 96%)。这些发现凸显了合成复合材料作为超级电容器高效电极材料的潜力,可提供更高的电化学性能和稳定性。这项研究强调了绿色合成方法在开发可持续储能应用功能材料方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信