The multiple-mechanisms hypothesis of biodiversity–stability relationships

IF 3 2区 环境科学与生态学 Q2 ECOLOGY
Nico Eisenhauer , Kevin Mueller , Anne Ebeling , Gerd Gleixner , Yuanyuan Huang , Anna-Maria Madaj , Christiane Roscher , Alexandra Weigelt , Michael Bahn , Michael Bonkowski , Ulrich Brose , Simone Cesarz , Hannes Feilhauer , Claudia Guimaraes-Steinicke , Anna Heintz-Buschart , Jes Hines , Markus Lange , Sebastian T. Meyer , Neha Mohanbabu , Liesje Mommer , Forest Isbell
{"title":"The multiple-mechanisms hypothesis of biodiversity–stability relationships","authors":"Nico Eisenhauer ,&nbsp;Kevin Mueller ,&nbsp;Anne Ebeling ,&nbsp;Gerd Gleixner ,&nbsp;Yuanyuan Huang ,&nbsp;Anna-Maria Madaj ,&nbsp;Christiane Roscher ,&nbsp;Alexandra Weigelt ,&nbsp;Michael Bahn ,&nbsp;Michael Bonkowski ,&nbsp;Ulrich Brose ,&nbsp;Simone Cesarz ,&nbsp;Hannes Feilhauer ,&nbsp;Claudia Guimaraes-Steinicke ,&nbsp;Anna Heintz-Buschart ,&nbsp;Jes Hines ,&nbsp;Markus Lange ,&nbsp;Sebastian T. Meyer ,&nbsp;Neha Mohanbabu ,&nbsp;Liesje Mommer ,&nbsp;Forest Isbell","doi":"10.1016/j.baae.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Long-term research in grassland biodiversity experiments has provided empirical evidence that ecological and evolutionary processes are intertwined in determining both biodiversity–ecosystem functioning (BEF) and biodiversity–stability relationships. Focusing on plant diversity, we hypothesize that multifunctional stability is highest in high-diversity plant communities and that biodiversity–stability relationships increase over time due to a variety of forms of ecological complementarity including the interaction with other biota above and below ground. We introduce the <em>multiple-mechanisms hypothesis of biodiversity–stability relationships</em> suggesting that it is not an individual mechanism that drives long-term biodiversity effects on ecosystem functioning and stability but that several intertwined processes produce increasingly positive ecosystem effects. The following six mechanisms are important. Low-diversity plant communities accumulate more plant antagonists over time (1), and use resources less efficiently and have more open, leaky nutrient cycles (2). Conversely, high-diversity plant communities support a greater diversity and activity of beneficial interaction partners across trophic levels (3); diversify in their traits over time and space, within and across species, to optimize temporal (intra- and interannual) and spatial complementarity (4), create a more stable microclimate (5), and foster higher top-down control of aboveground and belowground herbivores by predators (6). In line with the observation that different species play unique roles in ecosystems that are dynamic and multifaceted, the particular mechanism contributing most to the higher performance and stability of diverse plant communities might differ across ecosystem functions, years, locations, and environmental change scenarios. This indicates “between-context insurance” or “across-context complementarity” of different mechanisms. We introduce examples of experiments that will be conducted to test our hypotheses and which might inspire additional work.</p></div>","PeriodicalId":8708,"journal":{"name":"Basic and Applied Ecology","volume":"79 ","pages":"Pages 153-166"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1439179124000495/pdfft?md5=5409b178c3e2f12ccc751de18fdabe51&pid=1-s2.0-S1439179124000495-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Applied Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1439179124000495","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term research in grassland biodiversity experiments has provided empirical evidence that ecological and evolutionary processes are intertwined in determining both biodiversity–ecosystem functioning (BEF) and biodiversity–stability relationships. Focusing on plant diversity, we hypothesize that multifunctional stability is highest in high-diversity plant communities and that biodiversity–stability relationships increase over time due to a variety of forms of ecological complementarity including the interaction with other biota above and below ground. We introduce the multiple-mechanisms hypothesis of biodiversity–stability relationships suggesting that it is not an individual mechanism that drives long-term biodiversity effects on ecosystem functioning and stability but that several intertwined processes produce increasingly positive ecosystem effects. The following six mechanisms are important. Low-diversity plant communities accumulate more plant antagonists over time (1), and use resources less efficiently and have more open, leaky nutrient cycles (2). Conversely, high-diversity plant communities support a greater diversity and activity of beneficial interaction partners across trophic levels (3); diversify in their traits over time and space, within and across species, to optimize temporal (intra- and interannual) and spatial complementarity (4), create a more stable microclimate (5), and foster higher top-down control of aboveground and belowground herbivores by predators (6). In line with the observation that different species play unique roles in ecosystems that are dynamic and multifaceted, the particular mechanism contributing most to the higher performance and stability of diverse plant communities might differ across ecosystem functions, years, locations, and environmental change scenarios. This indicates “between-context insurance” or “across-context complementarity” of different mechanisms. We introduce examples of experiments that will be conducted to test our hypotheses and which might inspire additional work.

生物多样性与稳定性关系的多重机制假说
草地生物多样性实验的长期研究提供了实证证据,证明生态和进化过程在决定生物多样性-生态系统功能(BEF)和生物多样性-稳定性关系方面是相互交织的。以植物多样性为重点,我们假设高多样性植物群落的多功能稳定性最高,而生物多样性-稳定性关系会随着时间的推移而增强,这是由于多种形式的生态互补性(包括与地面和地下其他生物群落的相互作用)造成的。我们提出了生物多样性-稳定性关系的多重机制假说,认为生物多样性对生态系统功能和稳定性的长期影响不是由单一机制驱动的,而是由几个相互交织的过程产生越来越积极的生态系统效应。以下六种机制非常重要。低多样性植物群落随着时间的推移会积累更多的植物拮抗剂 (1),资源利用效率较低,养分循环更开放、更不稳定 (2)。相反,高多样性植物群落支持各营养级有益互动伙伴的更大多样性和活性(3);在物种内和物种间,其性状随时间和空间而多样化,以优化时间(年内和年际)和空间互补性(4),创造更稳定的小气候(5),并促进捕食者对地上和地下食草动物更强的自上而下的控制(6)。据观察,不同物种在动态和多层面的生态系统中发挥着独特的作用,因此,不同生态系统功能、不同年份、不同地点和不同环境变化情况下,最有助于提高多样化植物群落性能和稳定性的特定机制可能会有所不同。这表明不同机制之间存在 "情境保险 "或 "跨情境互补"。我们将举例介绍为验证我们的假设而进行的实验,这些实验可能会激发更多的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Basic and Applied Ecology
Basic and Applied Ecology 环境科学-生态学
CiteScore
6.90
自引率
5.30%
发文量
103
审稿时长
10.6 weeks
期刊介绍: Basic and Applied Ecology provides a forum in which significant advances and ideas can be rapidly communicated to a wide audience. Basic and Applied Ecology publishes original contributions, perspectives and reviews from all areas of basic and applied ecology. Ecologists from all countries are invited to publish ecological research of international interest in its pages. There is no bias with regard to taxon or geographical area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信