{"title":"Self-aware active metamaterial cell 3D-printed in a single process","authors":"","doi":"10.1016/j.ijmecsci.2024.109591","DOIUrl":null,"url":null,"abstract":"<div><p>Metamaterials are capable of attenuating undesired mechanical vibrations within a narrow band-gap frequency range; however, real-world applications often require adjustments due to varying loads and frequency content. This study introduces a self-aware, thermo-active metamaterial, 3D-printed in a single process using thermoplastic material extrusion. The adjustment of the natural frequency and band-gap region is achieved through resistive heating of conductive paths, which alters the stiffness of the base cell’s resonator. Additionally, these conductive paths facilitate the detection of the resonator’s excitation frequency and temperature, thereby eliminating the need for external sensors. This dynamic adaptability, experimentally demonstrated by achieving a band-gap tuning range from 505 Hz to 445 Hz with a 17 °C temperature difference, highlights the potential of these metamaterials for applications in smart structures across the aerospace, civil, and automotive industries.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020740324006325/pdfft?md5=69137ba988fa333361e587bc7a43c68d&pid=1-s2.0-S0020740324006325-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324006325","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metamaterials are capable of attenuating undesired mechanical vibrations within a narrow band-gap frequency range; however, real-world applications often require adjustments due to varying loads and frequency content. This study introduces a self-aware, thermo-active metamaterial, 3D-printed in a single process using thermoplastic material extrusion. The adjustment of the natural frequency and band-gap region is achieved through resistive heating of conductive paths, which alters the stiffness of the base cell’s resonator. Additionally, these conductive paths facilitate the detection of the resonator’s excitation frequency and temperature, thereby eliminating the need for external sensors. This dynamic adaptability, experimentally demonstrated by achieving a band-gap tuning range from 505 Hz to 445 Hz with a 17 °C temperature difference, highlights the potential of these metamaterials for applications in smart structures across the aerospace, civil, and automotive industries.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.