A finite difference scheme for (2+1)D cubic-quintic nonlinear Schrödinger equations with nonlinear damping

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anh Ha Le , Toan T. Huynh , Quan M. Nguyen
{"title":"A finite difference scheme for (2+1)D cubic-quintic nonlinear Schrödinger equations with nonlinear damping","authors":"Anh Ha Le ,&nbsp;Toan T. Huynh ,&nbsp;Quan M. Nguyen","doi":"10.1016/j.apnum.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Solitons of the purely cubic nonlinear Schrödinger equation in a space dimension of <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> suffer critical and supercritical collapses. These solitons can be stabilized in a cubic-quintic nonlinear medium. In this paper, we analyze the Crank-Nicolson finite difference scheme for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping. We show that both the discrete solution, in the discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, and discrete energy are bounded. By using appropriate settings and estimations, the existence and the uniqueness of the numerical solution are proved. In addition, the error estimations are established in terms of second order for both space and time in discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm. Numerical simulations for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping are conducted to validate the convergence.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001867/pdfft?md5=29380bcb28827a3fc015cb9476b8a842&pid=1-s2.0-S0168927424001867-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Solitons of the purely cubic nonlinear Schrödinger equation in a space dimension of n2 suffer critical and supercritical collapses. These solitons can be stabilized in a cubic-quintic nonlinear medium. In this paper, we analyze the Crank-Nicolson finite difference scheme for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping. We show that both the discrete solution, in the discrete L2-norm, and discrete energy are bounded. By using appropriate settings and estimations, the existence and the uniqueness of the numerical solution are proved. In addition, the error estimations are established in terms of second order for both space and time in discrete L2-norm and H1-norm. Numerical simulations for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping are conducted to validate the convergence.

Abstract Image

具有非线性阻尼的 (2+1)D 立方五次方非线性薛定谔方程的有限差分方案
空间维数 n≥2 的纯立方非线性薛定谔方程的孤子会发生临界和超临界坍缩。这些孤子可以在立方五次元非线性介质中稳定下来。本文分析了具有立方阻尼的 (2+1)D 立方-五次方非线性薛定谔方程的 Crank-Nicolson 有限差分方案。我们证明,离散 L2 值的离散解和离散能量都是有界的。通过使用适当的设置和估计,证明了数值解的存在性和唯一性。此外,还建立了离散 L2 规范和 H1 规范下空间和时间的二阶误差估计。对具有立方阻尼的 (2+1)D 立方五次方非线性薛定谔方程进行了数值模拟,以验证其收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信