Critical points, stability, and basins of attraction of three Kuramoto oscillators with isosceles triangle network

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaoxue Zhao , Xiang Zhou
{"title":"Critical points, stability, and basins of attraction of three Kuramoto oscillators with isosceles triangle network","authors":"Xiaoxue Zhao ,&nbsp;Xiang Zhou","doi":"10.1016/j.aml.2024.109246","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the Kuramoto model with three oscillators interconnected by an isosceles triangle network. The characteristic of this model is that the coupling connections between the oscillators can be either attractive or repulsive. We list all critical points and investigate their stability. We furthermore present a framework studying convergence towards stable critical points under special coupled strengths. The main tool is the linearization and the monotonicity arguments of oscillator diameter.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002660","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Kuramoto model with three oscillators interconnected by an isosceles triangle network. The characteristic of this model is that the coupling connections between the oscillators can be either attractive or repulsive. We list all critical points and investigate their stability. We furthermore present a framework studying convergence towards stable critical points under special coupled strengths. The main tool is the linearization and the monotonicity arguments of oscillator diameter.

具有等腰三角形网络的三个仓本振荡器的临界点、稳定性和吸引盆地
我们研究了由等腰三角形网络相互连接的三个振子的仓本模型。该模型的特点是振子之间的耦合连接既可以是吸引性的,也可以是排斥性的。我们列出了所有临界点,并研究了它们的稳定性。此外,我们还提出了一个研究特殊耦合强度下稳定临界点收敛性的框架。主要工具是振荡器直径的线性化和单调性论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信