Modeling oil/water emulsion separation in batch systems with population balances in the presence of surfactant

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
{"title":"Modeling oil/water emulsion separation in batch systems with population balances in the presence of surfactant","authors":"","doi":"10.1016/j.ces.2024.120558","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a simplified model for batch gravitational separation of liquid–liquid dispersions, integrating a decantation model with a high order moment conserving method of classes in population balances (PBM-HMMC). The proposed model incorporates the dynamics of surfactants and their effect on droplet size distribution, emphasizing the crucial influence of surfactants on emulsion stability. Notably, while extensive literature exists on predicting interphases in batch separation with surfactants, the application of population balance methods to predict droplet size distribution evolution is scarcely addressed, which is a primary focus of this work. The model’s accuracy is verified through comparison with independent experimental data, confirming its practical relevance. Furthermore, the research explores the impact of various parameters, including emulsion height, surfactant concentration and type, and droplet size distribution, on the separation process.</p></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009250924008583/pdfft?md5=b4e44a563fbad9a9a0e862e7f585f45b&pid=1-s2.0-S0009250924008583-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924008583","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a simplified model for batch gravitational separation of liquid–liquid dispersions, integrating a decantation model with a high order moment conserving method of classes in population balances (PBM-HMMC). The proposed model incorporates the dynamics of surfactants and their effect on droplet size distribution, emphasizing the crucial influence of surfactants on emulsion stability. Notably, while extensive literature exists on predicting interphases in batch separation with surfactants, the application of population balance methods to predict droplet size distribution evolution is scarcely addressed, which is a primary focus of this work. The model’s accuracy is verified through comparison with independent experimental data, confirming its practical relevance. Furthermore, the research explores the impact of various parameters, including emulsion height, surfactant concentration and type, and droplet size distribution, on the separation process.

Abstract Image

利用表面活性剂存在时的种群平衡模拟间歇式系统中的油/水乳液分离
本研究介绍了一种用于液-液分散体批量重力分离的简化模型,该模型将倾析模型与种群平衡中的高阶矩守恒类方法(PBM-HMMC)相结合。所提议的模型结合了表面活性剂的动力学及其对液滴粒度分布的影响,强调了表面活性剂对乳液稳定性的重要影响。值得注意的是,虽然已有大量文献对使用表面活性剂进行批次分离时的相间现象进行了预测,但应用种群平衡方法预测液滴粒度分布演变的研究却很少,而这正是本研究的主要关注点。通过与独立的实验数据进行比较,验证了模型的准确性,确认了其实用性。此外,研究还探讨了乳液高度、表面活性剂浓度和类型以及液滴粒度分布等各种参数对分离过程的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信