Design, construction and testing of the prototype cryogenic circulation centrifugal pump for the high energy photon source

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
{"title":"Design, construction and testing of the prototype cryogenic circulation centrifugal pump for the high energy photon source","authors":"","doi":"10.1016/j.cryogenics.2024.103900","DOIUrl":null,"url":null,"abstract":"<div><p>A cryogenic circulation pump (CCP) with the small flow rate and low heat leakage, which is the<!--> <!-->key<!--> <!-->equipment of the cooling system for the cryogenic permanent magnet undulator (CPMU)<!--> <!-->and synchrotron monochromator in High Energy Photon Source(HEPS), is developed according to the design parameters and operation experiences. The mechanic structure of the CCP including a motor at room temperature, an impeller and a volute in the cryogenic environment is designed, and numerical simulation on the rotating shaft and internal flows are performed to predict the mechanical and hydrodynamic performances of the pump. Meanwhile, the experimental investigation of the CCP is carried out in the liquid nitrogen (LN<sub>2</sub>) cryogenic system, and the hydrodynamic performances of the CCP are verified experimentally. The results are shown that the calculated performances of the CCP are in reasonable agreement with the experimental results, which indicates that the numerical calculation model of the CCP is more effective. Moreover, the deviations of pressure drop and efficiency between the calculation and measurement are analyzed in this paper.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001206","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A cryogenic circulation pump (CCP) with the small flow rate and low heat leakage, which is the key equipment of the cooling system for the cryogenic permanent magnet undulator (CPMU) and synchrotron monochromator in High Energy Photon Source(HEPS), is developed according to the design parameters and operation experiences. The mechanic structure of the CCP including a motor at room temperature, an impeller and a volute in the cryogenic environment is designed, and numerical simulation on the rotating shaft and internal flows are performed to predict the mechanical and hydrodynamic performances of the pump. Meanwhile, the experimental investigation of the CCP is carried out in the liquid nitrogen (LN2) cryogenic system, and the hydrodynamic performances of the CCP are verified experimentally. The results are shown that the calculated performances of the CCP are in reasonable agreement with the experimental results, which indicates that the numerical calculation model of the CCP is more effective. Moreover, the deviations of pressure drop and efficiency between the calculation and measurement are analyzed in this paper.

高能光子源低温循环离心泵原型的设计、建造和测试
高能光子源(HEPS)中的低温永磁起电机(CPMU)和同步加速器单色仪冷却系统的关键设备--小流量、低漏热的低温循环泵(CCP),根据设计参数和运行经验研制了CCP。设计了 CCP 的机械结构,包括室温下的电机、叶轮和低温环境下的涡壳,并对旋转轴和内部流动进行了数值模拟,预测了泵的机械和流体力学性能。同时,在液氮(LN2)低温系统中对 CCP 进行了实验研究,并通过实验验证了 CCP 的流体力学性能。结果表明,CCP 的计算性能与实验结果基本一致,这表明 CCP 的数值计算模型更加有效。此外,本文还分析了计算结果与测量结果在压降和效率方面的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信