Separation of sulphur particles and droplets in high-sulfur gas fields based on a rotary thread demister: Experimentation, numerical simulation and optimization

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
{"title":"Separation of sulphur particles and droplets in high-sulfur gas fields based on a rotary thread demister: Experimentation, numerical simulation and optimization","authors":"","doi":"10.1016/j.cep.2024.109907","DOIUrl":null,"url":null,"abstract":"<div><p>To address the clogging of demister by elemental sulfur of high-sulfur gas fields, a rotary thread demister was proposed as an alternate. The results show: The feasibility of the rotary thread demister is verified through force analysis and simulation experiments; The experimental results revealed the Realizable k-ε turbulence model has the smallest average error of 3 %; Increases in rotational speed, count, diameter, and layers of the rotary thread enhance separation efficiency and pressure drop; Higher inlet velocities reduce separation efficiency while increasing pressure drop; Based on the response surface methodology and NSGA-II algorithm, the optimal parameters are determined, achieving separation efficiency of 100 % and pressure drop of 45.67 Pa for 19 μm sulfur particles and 20 μm droplets; The same parameters can remove the 3 μm size droplets and sulphur particles with separation efficiencies of 90.2 % and 92.3 %, respectively, at a pressure drop of 43.8 Pa without considering particle collisions.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124002459","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the clogging of demister by elemental sulfur of high-sulfur gas fields, a rotary thread demister was proposed as an alternate. The results show: The feasibility of the rotary thread demister is verified through force analysis and simulation experiments; The experimental results revealed the Realizable k-ε turbulence model has the smallest average error of 3 %; Increases in rotational speed, count, diameter, and layers of the rotary thread enhance separation efficiency and pressure drop; Higher inlet velocities reduce separation efficiency while increasing pressure drop; Based on the response surface methodology and NSGA-II algorithm, the optimal parameters are determined, achieving separation efficiency of 100 % and pressure drop of 45.67 Pa for 19 μm sulfur particles and 20 μm droplets; The same parameters can remove the 3 μm size droplets and sulphur particles with separation efficiencies of 90.2 % and 92.3 %, respectively, at a pressure drop of 43.8 Pa without considering particle collisions.

基于旋转螺纹除雾器分离高硫气田中的硫颗粒和液滴:实验、数值模拟和优化
为解决高硫气田元素硫对除雾器的堵塞问题,提出了一种旋转螺纹除雾器作为替代方案。研究结果表明通过受力分析和模拟实验,验证了旋转螺纹除雾器的可行性;实验结果表明,可实现的 k-ε 湍流模型的平均误差最小,仅为 3%;旋转螺纹的转速、数量、直径和层数的增加可提高分离效率和压降;较高的入口速度会降低分离效率,同时增加压降;基于响应面方法和 NSGA-II 算法,确定了最优参数,使 19 μm 硫磺气田的分离效率达到 100%,压降为 45.67 Pa;在不考虑颗粒碰撞的情况下,同样的参数可以在 43.8 Pa 的压降下去除 3 μm 大小的液滴和硫颗粒,分离效率分别为 90.2 % 和 92.3 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信