Rational design of defect-free carbon-silica-zirconia ceramic membrane derived from crosslinked organic structure for highly efficient gas separation

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
{"title":"Rational design of defect-free carbon-silica-zirconia ceramic membrane derived from crosslinked organic structure for highly efficient gas separation","authors":"","doi":"10.1016/j.memsci.2024.123112","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-SiO<sub>2</sub>-ZrO<sub>2</sub> ceramic membranes, fabricated via in-situ carbon deposition through the calcination of organic chelating ligands (OCLs), hold great promise for use in energy-efficient gas separation process. However, fabricating a defect-free membrane poses a significant challenge. In this study, we propose a facile one-pot sol-gel combining aldimine condensation strategy to design homogeneous carbon-SiO<sub>2</sub>-ZrO<sub>2</sub> ceramic membranes using 3-aminopropyltriethoxysilyl (APTES), zirconium (IV) <em>tert</em>-butoxide (ZrTB), and glyoxylic acid (GA) as precursors. The aldehyde-amine condensation between APTES and GA resulted in a crosslinked organic structure, enhancing the porosity of the membrane. The increased rigidity and orderliness reduced the migration of crosslinked organic components at elevated temperatures, leading to a uniform distribution of free carbon derived from pyrolysis. This method effectively suppresses the defect formation, thereby significantly improving the stability and separation performance of the obtained membranes. Owing to the high pore volume and uniform pore size distribution, APTES-ZrTB-GA calcined at 550 °C demonstrated a remarkable H<sub>2</sub> permeance of 4.1 × 10<sup>−7</sup> mol m<sup>−2</sup> s<sup>−1</sup> Pa<sup>−1</sup>, together with outstanding H<sub>2</sub>/CO<sub>2</sub>, H<sub>2</sub>/N<sub>2</sub> and H<sub>2</sub>/CH<sub>4</sub> selectivities of 13, 100 and 120, respectively. This study is expected to provide guidance for the design of defect-free carbon-SiO<sub>2</sub>-ZrO<sub>2</sub> ceramic membranes toward more challenging separation processes.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824007063","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-SiO2-ZrO2 ceramic membranes, fabricated via in-situ carbon deposition through the calcination of organic chelating ligands (OCLs), hold great promise for use in energy-efficient gas separation process. However, fabricating a defect-free membrane poses a significant challenge. In this study, we propose a facile one-pot sol-gel combining aldimine condensation strategy to design homogeneous carbon-SiO2-ZrO2 ceramic membranes using 3-aminopropyltriethoxysilyl (APTES), zirconium (IV) tert-butoxide (ZrTB), and glyoxylic acid (GA) as precursors. The aldehyde-amine condensation between APTES and GA resulted in a crosslinked organic structure, enhancing the porosity of the membrane. The increased rigidity and orderliness reduced the migration of crosslinked organic components at elevated temperatures, leading to a uniform distribution of free carbon derived from pyrolysis. This method effectively suppresses the defect formation, thereby significantly improving the stability and separation performance of the obtained membranes. Owing to the high pore volume and uniform pore size distribution, APTES-ZrTB-GA calcined at 550 °C demonstrated a remarkable H2 permeance of 4.1 × 10−7 mol m−2 s−1 Pa−1, together with outstanding H2/CO2, H2/N2 and H2/CH4 selectivities of 13, 100 and 120, respectively. This study is expected to provide guidance for the design of defect-free carbon-SiO2-ZrO2 ceramic membranes toward more challenging separation processes.

Abstract Image

Abstract Image

合理设计源自交联有机结构的无缺陷碳硅氧化锆陶瓷膜,实现高效气体分离
通过煅烧有机螯合配体(OCL)进行原位碳沉积而制成的碳-SiO2-ZrO2 陶瓷膜在节能气体分离过程中大有可为。然而,制造无缺陷膜是一项重大挑战。在本研究中,我们提出了一种简单的一锅溶胶-凝胶结合醛胺缩合策略,以 3-氨丙基三乙氧基硅烷(APTES)、叔丁醇锆(IV)和乙醛酸(GA)为前驱体,设计出均相的碳-SiO2-ZrO2 陶瓷膜。APTES 和 GA 之间的醛胺缩合产生了交联有机结构,提高了膜的孔隙率。刚性和有序性的提高减少了交联有机成分在高温下的迁移,从而使热解产生的游离碳分布均匀。这种方法有效地抑制了缺陷的形成,从而大大提高了膜的稳定性和分离性能。由于孔隙率高且孔径分布均匀,在 550 °C 煅烧的 APTES-ZrTB-GA 的 H2 渗透率高达 4.1 × 10-7 mol m-2 s-1 Pa-1,H2/CO2、H2/N2 和 H2/CH4 选择性分别为 13、100 和 120。这项研究有望为设计无缺陷碳-SiO2-ZrO2 陶瓷膜提供指导,以实现更具挑战性的分离过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信