{"title":"Eco-friendly low-carbon manganese ferroalloy production for cleaner steel technologies","authors":"Navneet Singh Randhawa, Rajesh Kanyut Minj, Krishna Kumar","doi":"10.1016/j.clet.2024.100784","DOIUrl":null,"url":null,"abstract":"<div><p>Global steel production, a major contributor to anthropogenic carbon dioxide, heavily relies on manganese, a key ingredient that significantly impacts the carbon footprint during the production of high-carbon ferromanganese. A single-step generation of low-carbon ferromanganese (LC-FeMn) from manganese ore in an electric arc furnace (EAF) was investigated. The theoretical and experimental investigations helped to balance the required and supplied energy. The process sustainability was predicted based on the enthalpy of the reaction. Pre-reduction of manganese ore decreased energy consumption in the smelting process and saved raw materials costs. The simulation studies revealed a significant effect of lime and silica on the slag-metal equilibrium. It further confirmed the best-reducing condition with the basicity 1.5–1.77 by smelting tests in EAF. Experimental results showed an optimal charge mixture comprising appropriate ratios of ore:SiMn:lime ratio, producing a standard-grade product. Simultaneous melting and smelting sensibly used the exothermic heat, consuming 410–880 kWh/ton, much lower than the international benchmark, i.e. approximately 2000 kWh/ton. The characterization of resulting slags corroborated the advantages of the manganese ore pre-reduction on the energy and reductant consumption, alloy grade, and slag characteristics. The present study's findings can potentially contribute to the ongoing low-carbon initiatives of steel.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"21 ","pages":"Article 100784"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000648/pdfft?md5=324861d21c641fdb75597a9c83cadc64&pid=1-s2.0-S2666790824000648-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Global steel production, a major contributor to anthropogenic carbon dioxide, heavily relies on manganese, a key ingredient that significantly impacts the carbon footprint during the production of high-carbon ferromanganese. A single-step generation of low-carbon ferromanganese (LC-FeMn) from manganese ore in an electric arc furnace (EAF) was investigated. The theoretical and experimental investigations helped to balance the required and supplied energy. The process sustainability was predicted based on the enthalpy of the reaction. Pre-reduction of manganese ore decreased energy consumption in the smelting process and saved raw materials costs. The simulation studies revealed a significant effect of lime and silica on the slag-metal equilibrium. It further confirmed the best-reducing condition with the basicity 1.5–1.77 by smelting tests in EAF. Experimental results showed an optimal charge mixture comprising appropriate ratios of ore:SiMn:lime ratio, producing a standard-grade product. Simultaneous melting and smelting sensibly used the exothermic heat, consuming 410–880 kWh/ton, much lower than the international benchmark, i.e. approximately 2000 kWh/ton. The characterization of resulting slags corroborated the advantages of the manganese ore pre-reduction on the energy and reductant consumption, alloy grade, and slag characteristics. The present study's findings can potentially contribute to the ongoing low-carbon initiatives of steel.