Disrupted gut harmony in attention-deficit/hyperactivity disorder: Dysbiosis and decreased short-chain fatty acids

IF 3.7 Q2 IMMUNOLOGY
{"title":"Disrupted gut harmony in attention-deficit/hyperactivity disorder: Dysbiosis and decreased short-chain fatty acids","authors":"","doi":"10.1016/j.bbih.2024.100829","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Attention-Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder with complex genetic and environmental underpinnings. Emerging evidence suggests a significant role of gut microbiota in ADHD pathophysiology. This study investigates variations in gut microbiota composition and Short-Chain Fatty Acid (SCFA) profiles between children and adolescents with ADHD and healthy controls.</p></div><div><h3>Methods</h3><p>The study included 42 ADHD patients and 31 healthy controls, aged 6–18 years. Fecal samples were analyzed for microbial composition using 16S rRNA gene sequencing and for SCFA profiles through gas chromatography-mass spectrometry (GC-MS). The study assessed both α and β diversity of gut microbiota and quantified various SCFAs to compare between the groups.</p></div><div><h3>Results</h3><p>ADHD subjects demonstrated significantly reduced gut microbiota diversity, as indicated by lower α-diversity indices (Shannon index, Observed species, Faith PD index) and a trend towards significance in β-diversity (Weighted UniFrac). Notably, the ADHD group exhibited significantly lower levels of key SCFAs, including acetic, propionic, isobutyric, isovaleric, and valeric acids, highlighting a distinct microbial and metabolic profile in these individuals.</p></div><div><h3>Conclusion</h3><p>This study uncovers significant alterations in gut microbiota and SCFA profiles in children with ADHD, compared to healthy controls. The observed changes in SCFAs, known for their associations with other behavioral and neurologic pathologies, and for their role in neural signaling. These findings offer a metabolite fingerprint that could potentially lead to novel diagnostic and treatment approaches for ADHD, emphasizing the importance of gut microbiota in the disorder’s pathogenesis and management.</p></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666354624001078/pdfft?md5=fbfb1518f5b131df5722b2ab92c09062&pid=1-s2.0-S2666354624001078-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, behavior, & immunity - health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666354624001078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Attention-Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder with complex genetic and environmental underpinnings. Emerging evidence suggests a significant role of gut microbiota in ADHD pathophysiology. This study investigates variations in gut microbiota composition and Short-Chain Fatty Acid (SCFA) profiles between children and adolescents with ADHD and healthy controls.

Methods

The study included 42 ADHD patients and 31 healthy controls, aged 6–18 years. Fecal samples were analyzed for microbial composition using 16S rRNA gene sequencing and for SCFA profiles through gas chromatography-mass spectrometry (GC-MS). The study assessed both α and β diversity of gut microbiota and quantified various SCFAs to compare between the groups.

Results

ADHD subjects demonstrated significantly reduced gut microbiota diversity, as indicated by lower α-diversity indices (Shannon index, Observed species, Faith PD index) and a trend towards significance in β-diversity (Weighted UniFrac). Notably, the ADHD group exhibited significantly lower levels of key SCFAs, including acetic, propionic, isobutyric, isovaleric, and valeric acids, highlighting a distinct microbial and metabolic profile in these individuals.

Conclusion

This study uncovers significant alterations in gut microbiota and SCFA profiles in children with ADHD, compared to healthy controls. The observed changes in SCFAs, known for their associations with other behavioral and neurologic pathologies, and for their role in neural signaling. These findings offer a metabolite fingerprint that could potentially lead to novel diagnostic and treatment approaches for ADHD, emphasizing the importance of gut microbiota in the disorder’s pathogenesis and management.

注意力缺陷/多动症的肠道和谐被破坏:菌群失调和短链脂肪酸减少。
背景注意缺陷多动障碍(ADHD)是一种普遍存在的神经发育障碍,具有复杂的遗传和环境基础。新的证据表明,肠道微生物群在多动症的病理生理学中起着重要作用。本研究调查了患有多动症的儿童和青少年与健康对照组之间肠道微生物群组成和短链脂肪酸(SCFA)特征的变化。通过 16S rRNA 基因测序分析粪便样本中的微生物组成,并通过气相色谱-质谱联用仪 (GC-MS) 分析 SCFA 图谱。研究评估了肠道微生物群的α和β多样性,并对各种SCFA进行了量化,以便在各组之间进行比较。结果ADHD受试者的肠道微生物群多样性明显降低,表现为α多样性指数(香农指数、观察物种、费斯PD指数)较低,β多样性(加权UniFrac)呈显著下降趋势。值得注意的是,ADHD 组的主要 SCFAs(包括乙酸、丙酸、异丁酸、异戊酸和戊酸)水平明显较低,这突显了这些人独特的微生物和代谢特征。观察到的 SCFAs 变化因其与其他行为和神经系统病症的相关性以及在神经信号转导中的作用而闻名。这些发现提供了一种代谢物指纹,有可能为多动症带来新的诊断和治疗方法,强调了肠道微生物群在该疾病的发病机制和治疗中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain, behavior, & immunity - health
Brain, behavior, & immunity - health Biological Psychiatry, Behavioral Neuroscience
CiteScore
8.50
自引率
0.00%
发文量
0
审稿时长
97 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信