Extension groups of tautological bundles on punctual Quot schemes of curves

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Andreas Krug
{"title":"Extension groups of tautological bundles on punctual Quot schemes of curves","authors":"Andreas Krug","doi":"10.1016/j.matpur.2024.103600","DOIUrl":null,"url":null,"abstract":"<div><p>We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot–Chow morphism of tensor and wedge products of duals of tautological bundles.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000989/pdfft?md5=886e30cbdfb7383e909e55abb30ca80a&pid=1-s2.0-S0021782424000989-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot–Chow morphism of tensor and wedge products of duals of tautological bundles.

曲线守恒配位方案上同调束的扩展群
我们证明了在复杂光滑投影曲线上的标点 Quot 方案上的同调束的同调群和扩展群的公式。作为推论,我们证明了同调束决定了曲线上原始向量束的同构类。我们还给出了同调束对偶张量和楔积沿 Quot-Chow 形态的前推消失结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信