{"title":"Best-estimate water hammer simulations to avoid the calculation of unrealistically high loads or unphysical pressure and force peaks","authors":"Thorsten Neuhaus","doi":"10.1016/j.ijpvp.2024.105268","DOIUrl":null,"url":null,"abstract":"<div><p>For safety-related systems fluid loads due to fluid transients have to be quantified for subsequent structural analyses to ensure their integrity or function, as required. Usually transient fluid loads in pipe systems are determined with one-dimensional water hammer software. For single-phase liquid flow, the method of characteristics (MOC) is often used that gives in this case appropriate results. For the consideration of local vapor bubbles, the MOC is combined with the discrete vapor cavity model (DVC). The DVC model may generate unrealistic pressure spikes due to the calculation of the collapse of multi-cavities in scenarios, where only one vapor bubble should actually occur. The application of a two-phase code may improve the calculation results. One requirement for the latter codes is the ability to calculate the propagation of steep gradients without suffering from numerical diffusion to exclude the underestimation of fluid loads. This is commonly attained by applying higher-order numerical schemes. However, the application of a numerical method of pure 2nd order leads to the calculation of unphysical oscillations at steep gradients causing severe problems during the solution. To exclude this, numerical methods with flux limiters can be used. With their application, the calculation of unrealistically high loads due to numerical deficiencies can be minimized. In addition, the consideration of further physical effects, that lead to the reduction of loads during transient flow processes, allows for a more realistic calculation of the loads. These are unsteady friction, widening of the pipe caused by pressure increase, fluid-structure interaction at junctions and due to friction, degassing of gas that is initially dissolved physically in a liquid and thermodynamic non-equilibrium during vapor bubble collapse. The in-house code DYVRO applies a second-order accurate scheme with flux limiters based on the Godunov method and can account for the above-described physical phenomena. It is shown by comparison of calculation results obtained by DYVRO with experimental data from literature that with modeling of these physical effects the loads can be calculated more realistically. Generally, these loads are lower than the results calculated by simplified models, which do not account for these effects. Considering that these loads are applied in subsequent structural analyses, cost-intensive oversizing of pipes and their supports can be avoided, by ensuring the necessary safety.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105268"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001455","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For safety-related systems fluid loads due to fluid transients have to be quantified for subsequent structural analyses to ensure their integrity or function, as required. Usually transient fluid loads in pipe systems are determined with one-dimensional water hammer software. For single-phase liquid flow, the method of characteristics (MOC) is often used that gives in this case appropriate results. For the consideration of local vapor bubbles, the MOC is combined with the discrete vapor cavity model (DVC). The DVC model may generate unrealistic pressure spikes due to the calculation of the collapse of multi-cavities in scenarios, where only one vapor bubble should actually occur. The application of a two-phase code may improve the calculation results. One requirement for the latter codes is the ability to calculate the propagation of steep gradients without suffering from numerical diffusion to exclude the underestimation of fluid loads. This is commonly attained by applying higher-order numerical schemes. However, the application of a numerical method of pure 2nd order leads to the calculation of unphysical oscillations at steep gradients causing severe problems during the solution. To exclude this, numerical methods with flux limiters can be used. With their application, the calculation of unrealistically high loads due to numerical deficiencies can be minimized. In addition, the consideration of further physical effects, that lead to the reduction of loads during transient flow processes, allows for a more realistic calculation of the loads. These are unsteady friction, widening of the pipe caused by pressure increase, fluid-structure interaction at junctions and due to friction, degassing of gas that is initially dissolved physically in a liquid and thermodynamic non-equilibrium during vapor bubble collapse. The in-house code DYVRO applies a second-order accurate scheme with flux limiters based on the Godunov method and can account for the above-described physical phenomena. It is shown by comparison of calculation results obtained by DYVRO with experimental data from literature that with modeling of these physical effects the loads can be calculated more realistically. Generally, these loads are lower than the results calculated by simplified models, which do not account for these effects. Considering that these loads are applied in subsequent structural analyses, cost-intensive oversizing of pipes and their supports can be avoided, by ensuring the necessary safety.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.