Oxidation behavior of Cu-based brake pad for high-speed train

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
{"title":"Oxidation behavior of Cu-based brake pad for high-speed train","authors":"","doi":"10.1016/S1003-6326(24)66539-8","DOIUrl":null,"url":null,"abstract":"<div><p>Cu-based brake pad for high-speed train undergoes cyclic oxidation due to the generation and dissipation of friction heat during braking. The oxidation behavior of the Cu-based brake pad was investigated via isothermal oxidation at 300, 400, 500, 600 and 700 °C for up to 50 h. The results show that the oxidation of the Cu-based brake pad presents multiple stages. The combination of the oxidation of Cu and Fe and the oxygen diffusion controls the oxidation process in the earlier stage, while the oxidation of graphite plays a more important role in the later stages above 500 °C. The Cu<sub>2</sub>O nanoclusters are firstly formed by the oxidation of copper, then CuO nanowires, and finally fine and coarse equiaxed grains are generated. The rise in temperature promotes the growth and densification of Fe<sub>2</sub>O<sub>3</sub> nanosheets, which grow on the Fe<sub>3</sub>O<sub>4</sub> layer. However, Fe oxides are gradually covered by Cu oxides because of the larger volume expansion of Cu oxides. The connected pores formed by the graphite burn-off provide oxygen diffusion channels for internal oxidation. The improved surface microhardness is attributed to the formation of oxides.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632624665398/pdf?md5=9966fc369d5f03ad71d825c2de6dcc7d&pid=1-s2.0-S1003632624665398-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665398","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Cu-based brake pad for high-speed train undergoes cyclic oxidation due to the generation and dissipation of friction heat during braking. The oxidation behavior of the Cu-based brake pad was investigated via isothermal oxidation at 300, 400, 500, 600 and 700 °C for up to 50 h. The results show that the oxidation of the Cu-based brake pad presents multiple stages. The combination of the oxidation of Cu and Fe and the oxygen diffusion controls the oxidation process in the earlier stage, while the oxidation of graphite plays a more important role in the later stages above 500 °C. The Cu2O nanoclusters are firstly formed by the oxidation of copper, then CuO nanowires, and finally fine and coarse equiaxed grains are generated. The rise in temperature promotes the growth and densification of Fe2O3 nanosheets, which grow on the Fe3O4 layer. However, Fe oxides are gradually covered by Cu oxides because of the larger volume expansion of Cu oxides. The connected pores formed by the graphite burn-off provide oxygen diffusion channels for internal oxidation. The improved surface microhardness is attributed to the formation of oxides.

高速列车铜基刹车片的氧化行为
由于制动过程中摩擦热的产生和散失,高速列车的铜基刹车片会发生周期性氧化。研究人员通过在 300、400、500、600 和 700 °C 温度下进行长达 50 小时的等温氧化,对铜基刹车片的氧化行为进行了研究。在早期阶段,铜和铁的氧化以及氧气扩散共同控制着氧化过程,而在 500 °C 以上的后期阶段,石墨的氧化则起着更重要的作用。铜的氧化首先形成 Cu2O 纳米团簇,然后形成 CuO 纳米线,最后生成细小和粗糙的等轴晶粒。温度的升高促进了生长在 Fe3O4 层上的 Fe2O3 纳米片的生长和致密化。然而,由于 Cu 氧化物的体积膨胀较大,Fe 氧化物逐渐被 Cu 氧化物覆盖。石墨烧蚀形成的连通孔隙为内部氧化提供了氧气扩散通道。表面微硬度的提高归因于氧化物的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信