Deep Learning-Driven Parameter Adaptation for Underwater Image Restoration

Laura A. Martinho, José Pio, Felipe G. Oliveira
{"title":"Deep Learning-Driven Parameter Adaptation for Underwater Image Restoration","authors":"Laura A. Martinho, José Pio, Felipe G. Oliveira","doi":"10.5753/reic.2024.4671","DOIUrl":null,"url":null,"abstract":"In this paper we propose a learning-based approach to enhance underwater image quality by optimizing parameters and applying intensity transformations. Our methodology involves training a CNN Regression model on diverse underwater images to learn enhancing parameters, followed by applying intensity transformation techniques. In order to evaluate our approach, we conducted experiments using well-known underwater image datasets found in the literature, comprising real-world subaquatic images and we propose a novel underwater image dataset, composed by 276 images from Amazon turbid water rivers. The results demonstrate that our approach achieves an impressive accuracy rate in three different underwater image datasets. This high level of accuracy showcases the robustness and efficiency of our proposed method in restoring underwater images.","PeriodicalId":403544,"journal":{"name":"Revista Eletrônica de Iniciação Científica em Computação","volume":"327 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Eletrônica de Iniciação Científica em Computação","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/reic.2024.4671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a learning-based approach to enhance underwater image quality by optimizing parameters and applying intensity transformations. Our methodology involves training a CNN Regression model on diverse underwater images to learn enhancing parameters, followed by applying intensity transformation techniques. In order to evaluate our approach, we conducted experiments using well-known underwater image datasets found in the literature, comprising real-world subaquatic images and we propose a novel underwater image dataset, composed by 276 images from Amazon turbid water rivers. The results demonstrate that our approach achieves an impressive accuracy rate in three different underwater image datasets. This high level of accuracy showcases the robustness and efficiency of our proposed method in restoring underwater images.
深度学习驱动的水下图像修复参数自适应
在本文中,我们提出了一种基于学习的方法,通过优化参数和应用强度变换来提高水下图像质量。我们的方法包括在不同的水下图像上训练 CNN 回归模型以学习增强参数,然后应用强度变换技术。为了评估我们的方法,我们使用文献中的知名水下图像数据集进行了实验,其中包括真实世界的水下图像,我们还提出了一种新型水下图像数据集,由来自亚马逊浊水河流的 276 幅图像组成。结果表明,我们的方法在三个不同的水下图像数据集上都达到了令人印象深刻的准确率。如此高的准确率证明了我们提出的方法在修复水下图像时的稳健性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信