{"title":"A generalized deep neural network approach for improving resolution of fluorescence microscopy images","authors":"Zichen Jin, Qing He, Yang Liu, Kaige Wang","doi":"10.1142/s1793545824500111","DOIUrl":null,"url":null,"abstract":"Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed, imaging resolution, and imaging flux. This paper proposes a deep neural network based on a generative adversarial network (GAN). The generator employs a U-Net-based network, which integrates DenseNet for the downsampling component. The proposed method has excellent properties, for example, the network model is trained with several different datasets of biological structures; the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging; and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets. In addition, experimental results showed that the method improved the resolution of caveolin-coated pits (CCPs) structures from 264[Formula: see text]nm to 138[Formula: see text]nm, a 1.91-fold increase, and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"6 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/s1793545824500111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed, imaging resolution, and imaging flux. This paper proposes a deep neural network based on a generative adversarial network (GAN). The generator employs a U-Net-based network, which integrates DenseNet for the downsampling component. The proposed method has excellent properties, for example, the network model is trained with several different datasets of biological structures; the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging; and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets. In addition, experimental results showed that the method improved the resolution of caveolin-coated pits (CCPs) structures from 264[Formula: see text]nm to 138[Formula: see text]nm, a 1.91-fold increase, and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.