Genet Bekele, Abebaw A. Tsegaye, Abi M. Taddesse, E. Teju
{"title":"A stable electrochemical sensor for the detection of ascorbic acid based on Fe3O4/ZrO2 nano composite modified carbon paste electrode","authors":"Genet Bekele, Abebaw A. Tsegaye, Abi M. Taddesse, E. Teju","doi":"10.4314/bcse.v38i5.2","DOIUrl":null,"url":null,"abstract":"Magnetite and zirconium oxide (Fe3O4/ZrO2) nano composite, Fe3O4 and ZrO2 nanoparticles were synthesized by a chemical co-precipitation method and hydrothermal decomposition of zirconium metal organic framework, respectively. The structural and morphological properties of the as-synthesized materials were characterized by X-ray diffraction and scanning electron microscope. Electrochemical properties of carbon paste electrode (CPE) modified by Fe3O4, ZrO2 and Fe3O4/ZrO2 nano composites were studied using cyclic voltammetry and electrochemical impedance spectroscopy in the presence of 2 mM K3Fe(CN)6/0.1 M KCl aqueous solution. Voltammograms acquired on Fe3O4/ZrO2/CPE showed an enhancement of the oxidation current density compared to the other modified electrodes. By applying the Randles-Sevcik equation, the CPE modified by Fe3O4/ZrO2 nano composite resulted in an electroactive surface area of 0.0978 cm2; about twice to that of the unmodified CPE (0.0458 cm2). The electrochemical sensor was used for the detection of ascorbic acid (AA). Under optimized condition (pH 4) the sensor exhibits sensitivity of 10 µA/µM; LOD of 0.46 µM; LOQ of 1.53 µM and a linear range of 1-6 μM AA. The Fe3O4/ZrO2/CPE has also shown accepted reproducibility (% recoveries 93.54%); RSD of 2.4% and stable response of 96.91% of the initial current after 30 days of storage. \nKEY WORDS: Ascorbic acid, Carbon paste electrode, Electrochemical sensor, Nano composite \nBull. Chem. Soc. Ethiop. 2024, 38(5), 1205-1223. \nDOI: https://dx.doi.org/10.4314/bcse.v38i5.2 ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"99 3","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v38i5.2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetite and zirconium oxide (Fe3O4/ZrO2) nano composite, Fe3O4 and ZrO2 nanoparticles were synthesized by a chemical co-precipitation method and hydrothermal decomposition of zirconium metal organic framework, respectively. The structural and morphological properties of the as-synthesized materials were characterized by X-ray diffraction and scanning electron microscope. Electrochemical properties of carbon paste electrode (CPE) modified by Fe3O4, ZrO2 and Fe3O4/ZrO2 nano composites were studied using cyclic voltammetry and electrochemical impedance spectroscopy in the presence of 2 mM K3Fe(CN)6/0.1 M KCl aqueous solution. Voltammograms acquired on Fe3O4/ZrO2/CPE showed an enhancement of the oxidation current density compared to the other modified electrodes. By applying the Randles-Sevcik equation, the CPE modified by Fe3O4/ZrO2 nano composite resulted in an electroactive surface area of 0.0978 cm2; about twice to that of the unmodified CPE (0.0458 cm2). The electrochemical sensor was used for the detection of ascorbic acid (AA). Under optimized condition (pH 4) the sensor exhibits sensitivity of 10 µA/µM; LOD of 0.46 µM; LOQ of 1.53 µM and a linear range of 1-6 μM AA. The Fe3O4/ZrO2/CPE has also shown accepted reproducibility (% recoveries 93.54%); RSD of 2.4% and stable response of 96.91% of the initial current after 30 days of storage.
KEY WORDS: Ascorbic acid, Carbon paste electrode, Electrochemical sensor, Nano composite
Bull. Chem. Soc. Ethiop. 2024, 38(5), 1205-1223.
DOI: https://dx.doi.org/10.4314/bcse.v38i5.2
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.