Artificial Neural Networks for Modeling Pollutant Removal in Wastewater Treatment: A Review

Tran Nhat Minh, Nguyen Thanh Truyen, Dinh Thi Hong Loan
{"title":"Artificial Neural Networks for Modeling Pollutant Removal in Wastewater Treatment: A Review","authors":"Tran Nhat Minh, Nguyen Thanh Truyen, Dinh Thi Hong Loan","doi":"10.52403/gijash.20240211","DOIUrl":null,"url":null,"abstract":"Water pollution poses global challenges to environmental sustainability and public health, necessitating effective wastewater treatment strategies. Traditional linear models often fail to capture the complexities of pollutant removal processes. Artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) have emerged as powerful tools for modeling and optimizing wastewater treatment. ANNs excel in learning complex patterns and nonlinear relationships, while ANFIS integrates neural network learning with fuzzy logic to handle uncertainties in environmental systems. Case studies demonstrate their efficacy in predicting pollutant removal efficiencies, with ANFIS consistently outperforming traditional methods. Insights into influential factors like pH and pollutant concentration guide process optimization. The review underscores ANNs and ANFIS' potential to enhance wastewater treatment efficiency, reduce costs, and ensure regulatory compliance, paving the way for sustainable water management practices.\n\nKeywords: Artificial neural networks; Adaptive neuro-fuzzy inference systems; Modelling; Wastewater","PeriodicalId":497100,"journal":{"name":"Galore international journal of applied sciences and humanities","volume":" 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galore international journal of applied sciences and humanities","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.52403/gijash.20240211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water pollution poses global challenges to environmental sustainability and public health, necessitating effective wastewater treatment strategies. Traditional linear models often fail to capture the complexities of pollutant removal processes. Artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) have emerged as powerful tools for modeling and optimizing wastewater treatment. ANNs excel in learning complex patterns and nonlinear relationships, while ANFIS integrates neural network learning with fuzzy logic to handle uncertainties in environmental systems. Case studies demonstrate their efficacy in predicting pollutant removal efficiencies, with ANFIS consistently outperforming traditional methods. Insights into influential factors like pH and pollutant concentration guide process optimization. The review underscores ANNs and ANFIS' potential to enhance wastewater treatment efficiency, reduce costs, and ensure regulatory compliance, paving the way for sustainable water management practices. Keywords: Artificial neural networks; Adaptive neuro-fuzzy inference systems; Modelling; Wastewater
用于模拟废水处理中污染物去除的人工神经网络:综述
水污染对环境可持续性和公众健康构成了全球性挑战,因此必须采取有效的废水处理策略。传统的线性模型往往无法捕捉污染物去除过程的复杂性。人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)已成为污水处理建模和优化的强大工具。ANN 擅长学习复杂的模式和非线性关系,而 ANFIS 则将神经网络学习与模糊逻辑相结合,以处理环境系统中的不确定性。案例研究证明了它们在预测污染物去除效率方面的功效,其中 ANFIS 的表现一直优于传统方法。对 pH 值和污染物浓度等影响因素的深入了解为工艺优化提供了指导。综述强调了人工神经网络和 ANFIS 在提高废水处理效率、降低成本和确保法规遵从方面的潜力,为可持续水管理实践铺平了道路:人工神经网络;自适应神经模糊推理系统;建模;废水
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信