Level of thermal maturity estimation in unconventional reservoirs using interval inversion and simulating annealing method

IF 2.3 4区 地球科学
Rafael Valadez Vergara, Norbert Péter Szabó
{"title":"Level of thermal maturity estimation in unconventional reservoirs using interval inversion and simulating annealing method","authors":"Rafael Valadez Vergara,&nbsp;Norbert Péter Szabó","doi":"10.1007/s11600-024-01413-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel geophysical approach for estimating the level of thermal maturity (LOM) in unconventional hydrocarbon reservoirs using well log data. LOM is a crucial parameter for assessing the hydrocarbon generation potential of source rocks, but it traditionally relies on laboratory measurements of core samples, which can be time-consuming and costly. The proposed method combines two techniques: interval inversion for estimating total organic carbon (TOC) content from well logs and simulated annealing (SA) optimization for deriving LOM from the estimated TOC. The interval inversion method enables accurate TOC estimation by jointly interpreting multiple well logs over depth intervals, overcoming limitations of conventional point-by-point inversion. Using the estimated TOC, the SA algorithm optimizes an energy function related to Passey's empirical TOC-LOM relationship, iteratively finding the optimal LOM value that best fits the well log data. This approach provides a continuous in situ LOM profile along the borehole without requiring core measurements. The effectiveness of the method is demonstrated through case studies on datasets from the North Sea (Norway), the Pannonian Basin (Hungary), and the Kingak Formation (Alaska). The LOM estimates show good agreement with reported maturity levels and allow reliable reservoir characterization. Statistical analysis confirms the robustness and accuracy of the results. By reducing dependence on core data, this integrated inversion-optimization workflow streamlines the reservoir prospecting phase, enhancing operational efficiency. The method holds promising applications across diverse geological settings for cost-effective evaluation of unconventional hydrocarbon plays.</p></div>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"73 2","pages":"1261 - 1280"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11600-024-01413-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11600-024-01413-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel geophysical approach for estimating the level of thermal maturity (LOM) in unconventional hydrocarbon reservoirs using well log data. LOM is a crucial parameter for assessing the hydrocarbon generation potential of source rocks, but it traditionally relies on laboratory measurements of core samples, which can be time-consuming and costly. The proposed method combines two techniques: interval inversion for estimating total organic carbon (TOC) content from well logs and simulated annealing (SA) optimization for deriving LOM from the estimated TOC. The interval inversion method enables accurate TOC estimation by jointly interpreting multiple well logs over depth intervals, overcoming limitations of conventional point-by-point inversion. Using the estimated TOC, the SA algorithm optimizes an energy function related to Passey's empirical TOC-LOM relationship, iteratively finding the optimal LOM value that best fits the well log data. This approach provides a continuous in situ LOM profile along the borehole without requiring core measurements. The effectiveness of the method is demonstrated through case studies on datasets from the North Sea (Norway), the Pannonian Basin (Hungary), and the Kingak Formation (Alaska). The LOM estimates show good agreement with reported maturity levels and allow reliable reservoir characterization. Statistical analysis confirms the robustness and accuracy of the results. By reducing dependence on core data, this integrated inversion-optimization workflow streamlines the reservoir prospecting phase, enhancing operational efficiency. The method holds promising applications across diverse geological settings for cost-effective evaluation of unconventional hydrocarbon plays.

利用区间反演和模拟退火法估算非常规储层的热成熟度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geophysica
Acta Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.80
自引率
13.00%
发文量
251
期刊介绍: Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信